Contents
Introduction
1 Declarations and Initializations
2 Control Instructions
3 Expressions
4 Floating Point Issues
5 Functions
6 The C Preprocessor
7 Pointers :
8 More About Pointers
9 Arrays
10 Strings
11 Structures, Unions and Enumerations
12 Input/Output
13 Command Line Arguments
14 Bitwise Operators
15 Subtleties of rypedef
16 The const Phenomenon
17 Memory Allocation
18 Variable Number of Arguments
19 Complicated Declarations
20 Library Functions

vi

Vil

17
27
31
47
55
69
T
91
99
107
129
141
157
169
179
189
209
227
231

Introduction

There is no dearth of good C programming books in the market.
However, I found that there is not much material which could help a
C programmer to test his programming strengths, help improve his
confidence and in the process hone his C skills. Hence this book.

This is not a text book on C. In fact it is far from it.

It contains a lot of questions segregated topic-wise according to my
perception of the language. Almost all the questions are real one’s
asked by real people attempting to learn or program in C.

There is no reason why you should read the questions in the same
order as they appear in this book. You can pick up any topic that you
think you are good at (or poor at) and try to test your skills on that
topic.

There is a good chance that if you are learning or using C and you
have questions about C that aren’t answered in any of the other books
you’ve checked, you would find them answered here. It would be too
much to expect that you would find in this book answer to every
question you would have when you’re programming in C. This is

_ because many of the questions that may come up in your program-

ming would have to do with your problem domain, whereas this book
concentrates only on the C language. Also it doesn’t cover every
aspect of every operating system under which Cis running. Problems
specific to an operating systems, and general-purpose algorithms are

~ properly discussed in books devoted to those topics.

At the end of each chapter you would find correct answers to the

questions in that chapter. You would find some answers more
elaborate than others. At first sight this may seem unnecessary.
However, I have done this to give you the complete picture rather
than oversimplifying or leaving out important details.

vii

I have tried to avoid the questions whose answers are most obvious :

because the idea was not to increase the number of questions, but to

present questions which would force the readers to think twice before

answering. That’s in tune with the spirit of C - be precise, brevity has

its own importance. Chapter 1

So roll your sleeves and get on with the real questions. Good luck!! DeC'arations and |nitializati0ns

Yashavant P. Kanetkar
Nov., 1996

Q 11

What would be the output of the following program?

main()

{

char far *s1, *s2:
printf ("%d %d", sizeof (s1), sizeof (s2));
}

Q i

What would be the output of the following program?

intx=40:
main()
{
intx=20;
printf ("\n%d", x) ;

Q 1:

What would be the output of the following program?
viii

R

2 Test Your C Skills
main()
{
intx=40;
{
intx =20;
printf ("\n%d ", X) ;
}

printf ("%d", x) ;
}

Q 14

Is the following statement a declaration or a definition?

externinti;

Q 15

What would be the output of the following program?

main()
{ . .
extem inti;
i=20;
printf ("%d", sizeof (i)) ;

et

2

4 |

Would vary from compiler to compiler
Error, { undefined

TOw»

Chapter 1: Declarations and Initialisations 3

Q 16

Is it true that a global variable may have several declarations, but only
one definition? <Yes/No>

Q 17

Is it true that a function may have several declarations, but only one
definition? <Yes/No>

Q 13

In the following program where is the variable a getting defined and
where is it getting declared?

main()

{
externinta;
printf (*%d",a) ;

inta=2{};

QR 19

What would be the output of the following program?

main()
{
externinta;
printf ("\n%d",a) ;

inta=20:

Chapter 1: Declarations and Initialisations 5
4 Test Your C Skills
extern int fun() ;
A 20 int fun() ;
B..' 0 .
C. Garbage value Q 1.15
D. Error '
Why does’ the following program reporr a redeclaration error of
Q 1.10 function display()? =
. : ' . main()
What’s the difference between a defintion and declaration of a {
variable? display() : .=
b3 } (i
Q 111 void display() - |
{ i
L : _ : rintf ("\nCliffhanger") : !
If the definition of an external variable occurs in the source file before) Ikl ger') : 4 |
its use in a particular function, then there is no need for an extern i ' '
declaration in the function. <True/False> - :
QR 116 |
|
Q 112 d o
What would be the output of the following program? ; '
Suppose a program is divided into three files f/, f2 and f3, and a main() '
variable is defined in the file f/ but used in the files f2 and f3. In such {
a case would we need the external declaration for the variables in the : : |
extemn int fun (fl : :
files /2 and f3? <Yes/No> ok o)
a=fun(3.14); :
Q 113 printf ("%d", a) :
) |
When we mention the prototype of a function are we defining the int fun (aa) ‘ |
function or declaring it? float aa ; '
. . ; 1
Q 1.14 : retun ((int)aa); ‘
}

‘What’s the difference between the following declarations?

6 Test Your C Skills

A 3

B. 3.14
€ 0

D. Error

Q 117

Point out the error, if any, in the following program.

struct emp
char name[20] ;
intage ;

}

/* some more code may go here */

fun(intaa)

{ _
intbb ;
bb=aa*aa;
retum (bb);

}

main()

{
inta;
a=fun(20);

printf ("\n%d",a) ;
})

Chapter 1: Declarations and Initialisations 7

Q 118

If you are to share the variables or functions across several source
files how would you ensure that all definitions and declarations are
consistent?

Q 119

How would you rectify the error in the following program?

f(structemp) ;
/* any other prototypes may go here */
struct emp

charnamef20] ;
int age ;
}
;ﬂaih()
struct emp e = { "Soicher", 34 } ;
t(e);

i1

f{(struct emp ee)
{

printf ("\n%s %d", ee.name, ee.age) ;
}

Q 12

Global variables are available to all functions. Does there exist a
mechanism by way of which I can make it available to some and not
to others.

Al Test Your C Skills Chapter 1: Declarations and Initialisations _ 9

Q 121

A. 0 0.000000
= ! . Garbage values
What do you mean by gl__t_r_anslation unit? 2 B &
D. None of the above

Q 122

What would be the output of the following program?

Q 124

Some books suggest that the following definitions should be

Enal'n() preceded by the word static. Is it correct?
nhePl=l ' intal]={2,3, 4, 12,32};
printf ("\n%d %d %d", a(2], a[3], al4])3 o111 e - struct emp & = { "sandy", 23}
} i
A. Garbage values it Q 1.25
B. 233 g it
C 322 Point out the error, if any, in the following program.
SR ORG)
i _ / main()
Q@ 123 gt N SN {
int(*p)()="fun;
: (*p)();
What would be the output of the following program? _ }
" fun()
main() {
{ i : printf (“\nLoud and clear") ;
struct emp }
{ -
char name[20] ; o
int age ; Q L0
float sal ; _
b £3 ' Point out the error, if any, in the following program.
... struct emp e = { "Tiger" } ;
printf ("\n%d %f", e.age, e.sal) ; - main()

} (

10 Test Your C Skills Chapter 1: Declarations and Initialisations 11

union a A sy
: 2
inti;
charch[2]; 20 40. In case of a conflict between local variables, the one which is
}: _ more local that gets the priority.
unionaz=512;
printf ("%d %d", z.ch[0], z.ch[1]) ; A 1.4
) ' |
Q L Declaration

A 15

What do you mean by scope of a variable? What are the 4 different

types of scopes that a variable can have?
D. extern int i is a declaration and not a definition, hence the error.

Q 128 A

1.6
What are the different types of linkages?
Yes
Answers
SWers A 47
A 11
Yes

42
A s
A 12

extern int a is the declaration whereas int g = 20 is the definition.

20. Whenever there is a conflict between a local variable and a global A

variable it is the local variable which gets a priority. 1.9

A

12 ‘ Test Your C Skills

A 70

In the defintion of a variable space is reserved for the variable and

some initial value is given to it, whereas a declaration only identifies
the type of the variable for a function. Thus definition is the place
where the variable is created or assigned storage whereas declaration
refers to places where the nature of the variable is stated butno storage

is allocated.

A1
True

A il
Yes

A oras

We are declaring it. When the function alongwith the statements
belonging to it are mentioned we are defining the function.

A 114

There is no difference except for the fact that the first one gives a hint
that the function fun() is probably in another source file.

A 115

Here display()is called before it is defined. In such cases the compiler
assumes that the function display() is declared as

Chapter 1: Declarations and Initialisations 13

int display() ;

That is, an undeclared function is assumed to return an inf and accept
an unspecified number of arguments. Then when we define the
function the compiler finds that it is returning void hence the compiler
reports the discrepancy.

A 116

D. The error occurs because we have mixed the ANSI prototype with
K & R style of function definition.

When we use ANSI protptype for a function and pass a floaf to the
function it is promoted to a double. When the function accepts-this
double into a float a type mismatch occurs hence the error.

The remedy for this error could be to define the function as:

int fun (float aa)

{
}

A 117

Because of the missing semicolon at the end of the structure decla-
ration (the intervening comment further obscures it) the compiler
believes that fun() would return something of the the type struct emp,
wl:lereas in actuality it'is attempting to return an int. This causes a
mismatch, hence an error results.

14 Test Your C Skills

A 118

The best arrangement is to place each definition in a relevant .c file.
Then, put an external declaration in a header file (.h file) and use
#include to bring in the declaration wherever needed.

The .c file which contains the definition should also include the
header file, so that the compiler can check that the definition matches
the declaration.

A 119
Declare the structure before the prototype of f{).

A 12

No. The only way this can be achieved s to define the variable locally
in main() instead of defining it globally and then passing it to the
functions which need it.

A 121

A translation unit is a set of source files seen by the compiler and
translated as a unit; generally one .¢ file, plus all header files men-
tioned in #include directives.

A 12

D. When an automatic array is partially initialised, the remaining
array elements are initialised to 0.

Chapter 1: Declarations and Initialisations 15

A 123

A. When an automatic structure is partially initialised, the remaining
elements of the structure are initialised to 0.

A 124

Pre-ANSI C compilers had such a requirement. Compilers which
conform to ANSI C standard do not have such a requirement.

A 195

Here we are initialising the function pointer p to the address of the
function fun(). But during this initialisation the function has not been
defined. Hence an error.

To eliminate this error add the prototype of the fun() before declara-
tion of p, as shown below:

extern int fun() ;
or simply

int fun() ;

A 196

In a pre- ANSI compiler a union variable cannot be initialised. How-
ever, ANSI C permits initialisation of first memeber of the union.

16 Test Your C Skills

A 127

Chapter 2
~ Scope indicates the region over which the variable’s declaration has)
an effect. The four kinds of scopes are: file, function, block and ContrOI lnstructlons

prototype.

A 198

There are three different types of linkages: external, internal and Q 21
none. External linkage means global, non-static variables and func- o
tions, internal linkage means static variables and functions with file

scope, and no linkage means local variables. - What would be the output of the following program?

main()
{
inti=4;
switch (i)
{
default :
printf ("\nA mouse is an elephant built by the Japanese") ;
case 1: -
printf ("\nBreeding rabbits is a hare raising experience") ;
break ;
case2:
printf ("\nFriction is a drag") ;
break ;
case 3:
printf ("\nIf practice makes perfect, then nobody’s perfect") ;

}

Q 22

Point out the error, if any, in the for loop.

18 Test Your C Skills

main()
{
inti=1;
for (;;)
{
printf (“%d"’, i++) ;
if (i>10)
break ;

—

The condition in the for loop is a must.

The two semicolons should be dropped.

The for loop should be replaced by a while loop.
No error.

Q 23

Point out the error, if any, in the while loop.

UOw>

main()
{
inti=1;
while ()
{
printf ("%d", i++) ;
if(i>10)
break ;
}
}
A. The condition in the while loop is a must.
B. There should be at least a semicolon in the while().
C. The while loop should be replaced by a for loop.
D. Noerror.

M_Z: Control Instructions

19

Q 2+

Point out the error, if any, in the while loop.

main()

k=1
while (i<=5)

}
}
fun()
{

printf (“%d", i) ;

it (i>2)

goto here ;

here:
printf ("\nlf it works, Don’t fix it.") ;

}

Q 25

Point out the error, if any, in the following program.

main()

ii=4,i=2;
switch (i)

{

case1:
printf (
break ;

casej:
printf (
break ;

“\nTo err is human, to forgive is against company policy.") ;

"\nlf you have nothing to do, don’t do it here.") ;

20

Test Your C Skills

}

Q 25

Point out the error, if any, in the following program.

main()

{

}

inti=1;
switch (i)
{
case1:
printf ("\nRadioactive cats have 18 half-lives.") ;
break :
case 1"2+4;
printf ("\nBottle for rent - inquire within.") ;
break :

Q 27

Point out the error, if any, in the following program.

main()

{
inta=10;
switch (a)
{

}

}

printf ("Programmers never die. They just get lost in the processing”) ;

Chapter 2: Control Instructions 21

Q 238

Point out the error, if any, in the following program.

main()
{
inti=1;
switch (i)
{
printf ("Hello") ; /* common for both cases */
case 1:
printf ("\nindividualists unite!") ;
break ;
case2:
printf ("\nMoney is the root of all wealth.") ;
break ;

}

Q 29

Rewrite the following set of statements using conditional operators.

inta=1,b:
if(a>10)
b=20;

Q 2100

Point out the error, if any, in the following program.

main()

{
inta=10,b;

22 Test Your C Skills Chapter 2: Control Instructions _ 23
a>=57b=100:b=200; Q 215
printf ("\n%d", b) ;
}
The way break is used to take the control out of switch can continue
Q o ' be used to take the control to the beginning of the switch? <Yes/No>
Answers

What would be the output of the following program?

A 21

main()

{
char str[] = "Part-time musicians are semiconductors" ; A mouse is an elephant built by the Japanese
inta=5; - Breeding rabbits is a hare raising experience

printf (a > 10 ? "%50s" : "%s”, str) ;

}_ A 22

A Part-time musicians are semiconductors
B. Part-time musicians are semiconductors D
C.. Ermor
D None of the above
A 23
Q 212
' A
What is more efficient a switch statement or an if-else chain?
A 24
Q 213
goto cannot take control to a different function.
Can we use a switch statement to switch on strings? A
' 2.5

QR 214

We want to test whether a value lies in the range 2 to 4 or 5to 7. Can
we do this using a switch?

Constant expression required in the second case, we cannot use i

24 Test Your C Skills

A 26

No error. Constant expressions like 1 * 2 + 4 are acceptable in cases
of a switch.

A 27

Though never required, there can exist a switch which has no cases.

A 253

- Though there is no error, irrespective of the value of i the first printf()

can never get executed. In other words, all statements in a switch have
to belong to some case or the other.

A 29

inta=1,b, dummy;
a>10?b=20:dummy=1;

Note that the following would not have worked:

a>107b=20:;;
A 210

Ivalue required in function main(). The second assignment should be
written in parentheses as follows:

a>=57b=100:(b=200);

Chapter 2: Control Instructions 25

A 211
A

A 212

és far as efficiency is concerned there would hardly be any difference X
if at all. If the cases in a swirch are sparsely distributed the compiler

_ may internally use the equivalent of an if-else chain instead of a

compact j_ump table. However, one should use swirch where one can
It is (liefm:teiy a cleaner way to program and certainly is not any less
efficient than the if-else chain. '

B o

No. The cases in a switch must either have integer constants or
constant expressions.

A 214

Yes, though in a way which would n i
) ot be very practical if th
are bigger. The way is shown below: o s

Switch (a)
{
case 2 :
case 3:
case4:
/* some statements */
break :
case 5 :
case 6 :
case7:

26 Test Your C Skills

[* some other statements */
break ;

1
A 215

No. continue can work only with loops and not with switch.

Chapter 3

Expressions

Q 31

What would be the output of the following program?

main()

{
static int a[20] ;
inti=0:
ali] = i++;

printf ("\n%d %d %d", a[0], a[1], i);
)

Q s:

What would be the output of the following program?

main()
{
inti=3 ;
i =i++;
: printf ("%d", i) ;

28 Test Your C Skills

Q 33

The expression on the right hand side of && and |l operators does not
get evaluated if the left hand side determines the outcome.

<True/False>

Q 34

What would be the output of the following program?

main()
{
inti=2;
printf ("\n%d %d", ++, ++i) ;

—

CQw>
o W
e

utput may vary from compiler to compiler.

Q 35

What would be the output of the following program?

main()

{
intx=10,y=20,z=5,i;
=Xy <Z;
printf ("\n%d", i) ;

@ >

Chapter 3: Expressions 29

. Error
D. None of the above.

Q 35

Are the following two statements same? <Yes/No>

a<=207b=30:¢c=30;
(@<s=20)?b:c=30;

Q 37

Can you suggest any other way of writing the following expression
such that 30 is used only once?

a<=207b=30:¢c=30;

Q 3s

How come that the C standard says that the exbrcssion
=i+ T it :

is undefined, whereas, the expression

| =i+ && 4+

is perfectly legal.

Q 39

If a/i] = i++ is undefined, then by the same reason i = i + I should
also be undefined. But it is not so. Why?

30 Test Your C Skills

Q 310

Would the expression *p++ = ¢ be disallowed by the compiler.

Q 311

In the following code in which order the functions would be called?
a=11(23,14)*f2(12/4) +13();

f1, f2, f3

13, £2, f1

The order may vary from compiler to compiler
None of the above

Q 312

In the following code in which order the functions would be called?

TOwy

a=(f1(23,14)*12(12/4))+13():
f1, 2, f3
£3, £2, f1

The order may vary from compiler to compiler
None of the above

Q si3

What would be the output of the following program?

Uowp

main()

{
inti=-3,j=2,k=0,m:

C/ht’ﬂeﬁj ;. Expressions

31

m = ++i && +4j Il ++K ;
printf ("\n%d %d %d %d", i, j k, m) ;

}

Q 314

What would be the output of the following program?

main()

{
Wtl=-3 =2 k=0, m;
Cm =44 && i 44k
printf ("\n%d %d %d %d", i, j, k, m) ;
}

Q 3.15

What would be the output of the following program?

main()

{
inti=-3,j=2k=0,m;
M = ++i || ++] && ++k ;
printf ("\n%d %d %d %d", i, j, k, m) ;

Q 36

What would be the output of the following program?

main()

{
inti=-3,j=2,k=0,m;
M = ++ && ++] && ++k ;

32 Test Your C Skills

printf ("\n%d %d %d %d", i, j, k, m) ;

Answers

A 31

001
That’s what some of the compilers would give. But some other
compiler may give a different answer. The reason is, when a single

expression causes the same object to be modified or to be modified
and then inspected the behaviour is undefined.

A 32

4. But basically the behaviour is undefined for the same reason as in
3.1 above. i

A 33

True. For example if a is non-zero then b will not be evaluated in the
expressiona |l b.

A 34

D. The order of evaluation of the arguments to a function call is
unspecified.

A 35

Chapter 3: Expressions 33

A
A 36

No

A 37

*((a<=20)?8b:8&c)=30;
A 33

According to the C standard an object’s stored value can be modified
only once (by evaluation of expression) between two sequence
points. A sequence point occurs:

- at the end of full expression (expression which is not a
sub-expression in a larger expression)

- atthe &&, Il and ?: operators

- atafunction call (after the evaluation of all arguments, just
before the actual call)

Since in the first expression i is getting modified twice between two
sequence points the expression is undefined. Also, the second expres-
sion is legal because a sequence point is occurring at && and i is
getting modified once before and once after this sequence point.

A 39

The standard says that if an object is to get modified within an
expression then all accesses to it within the same expression must be
for computing the value to be stored in the object. The expression
ali] = i++ is disallowed because one of the accesses of i (the one in
a[i]) has nothing to do with the value that ends up being stored in .

34 Test Your C Skills

In this case the compiler may not know whether the access should
take place before or after the incremented value is stored. Since
there’s no good way to define it, the standard declares it as undefined.
As against this the expressioni = i +] is allowed because iis accessed
to determine /’s final value.

A3

No. Because here even though the value of p is accessed twice it is
used to modify two different objects p and *p.

Ancsini

C. Here the multiplication will happen betore the addition, but in
which order the functions would be called is undefined.

A 312

C. Here the multiplication will happen before the addition, but in
which order the functions would be called is undefined. In an arith-
metic expression the parentheses tell the compiler which operands
go with which operators but do not force the compiler to evaluate
everything within the parentheses first.

A Jngig
2301

A 314

2301

Chapter 3: Expressions

33

A 315
90

A 16

23 11

Chapter 4

Floating Point
Issues

Q 41

What would be the output of the following program?
main()

floata=0.7;
if(a<0.7)
printf ("C") ;
else
printf ("C++") ;

e

0

C++

Error

None of the above

Q 12

What would be the output of the following program?

oowp

main()

{

38 Test Your C Skills

floata=0.7:
if (a<0.7f)

printf ("C") ;
else

printf ("C++") ;

—a

(7

C++

Error

None of the above

Q i3

What would be the output of the following program?

oNwp

main()

t
)

printf ("%f", sqrt (36.0)) ;

6.0

6

6.000000

Some absurd result

(4] 44

Would this program give proper results? <Yes/No>

UNwy

main()
{
: printf (“%f", log (36.0)) ;

Chapter 4: Floating Point Issues

Q 45

Would the following printf{)s print the same values for any value of
a? <Yes/No>

main()

{

floata;
scanf ("%f", &a) ;
printf ("%f",a+a+a);
printf ("%f", 3*a);

}

Q 6

We want to round off x, a float, to an int value. The correct way to
do so would be

y=(int)(x+0.5);
yi=int (x #1057
y=(int)x+0.5;
y=(int) ((int)x+0.5)

QO voE»

4.7

Which error are you likely to get when you run the following
program?

main()
{

struct emp

{

char name[20] ;
float sal ;

40 Test Your C Skills

}s
struct emp e[10] ;
inti;
for(i=0;i<=9;i++)
scanf (*%s %f", e[i].name, &e[i].sal) ;

Suspicious pointer conversion

Floating point formats not linked

Cannot use scanf{) for structures

Strings cannot be nested inside structures

Unws

O

4.8

What causes the error in problem 4.7 above to occur and how would
you rectify the error in the above program?

QR 49

Which are the three different types of real data types available in C
and what are the format specifiers used for for them?

Q 210

By default any real number is treated as

a float

a double

a long double

Depends upon the memory model that you are using

QR 111

0w

|

Chapter 4: Floating Point Issues 4]

What should you do to treat the constant 3.14 as a float?

Q 412

What should you do to treat the constant 3.14 as a long double?

Q 13

What would be the output of the following program?

main()

{
}

printf ("%d %d %d", sizeof (3.14f), sizeof (3.14), sizeof (3.141) I

A. 444
B. 4 Garbage value Garbage value
C. 4810

D. Error

Q 4114

The binary equivalent of 5.375 is

A. 101.101110111

B. 101.011
e 101011
D. None of the above

Q .15

How floats are stored in binary form?

42 Test Your C Skills Chapter 4. Floating Point Issues 43

Q 4116 Answers

A 41

A float occupies 4 bytes. If the hexadecimal equivalent of each of
these bytes is A, B, C and D, then when this float is stored in memory

these bytes get stored in the order A
A. ABCD
B. DCBA A 42
C. OxABCD
D. 0xDCBA B
Q <17 A 13
If the binary equivalent of 5.375 in normalised form is 0100 0000 D
1010 1100 0000 0000 0000 0000, what would be the ouput of the
following program? :
iy A 44
main()
{ No, since we have not incl " "
float a=5.375: ot included the header file "math.h".
char*p;
inti; A 45
p=(char*)é&a;
for(i=0;i<=3;i++) No. For example, for 1.7 th] int di
printf ("%02x ", (unsigned char) p[i]) ; B Pic, -/ the two printf()s would print different
}
A. 40 AC 0000 A 46
B. 04CA0000
C. 0000AC40 A
D. 0000CA04
. ;
B

44 Test Your C Skills

A us

What causes the ‘floating point formats not linked’ error to occur?
When the compiler encounters a reference to the address of a float,
it sets a flag to have the linker link in the floating point emulator. A
floating point emulator is used to manipulate floating point numbers
in runtime library functions like scanf{) and atof{). There are some
cases in which the reference to the float is a bit obscure and the
compiler does not detect the need for the emulator.

These situations usually occur during the initial stages of program
development. Normally, once the program is fully developed, the
emulator will be used in such a fashion that the compiler can accurate-
ly determine when to link in the emulator.

To force linking of the floating point emulator into an application,
just include the following function in your program:

void LinkFloat (void)
{

floata =0, *b = &a ; /* cause emulator to be linked */
a="b; /* suppress warning - var not used */

I

There is no need to call this function from your program.

A 49

float 4bytes ™~ %f
double 8 bytes olf
long double 10 bytes %Lf

A 110

Chapter 4: Floating Point Issues 45

B
A 211
Use 3.14f
A 212
Use 3.141
A 113

C

A 114
B

i

Floating-point numbers are represented in IEEE format. The IEEE

format for floating point storage uses a sign bit, a mantissa and an
exponent for representing the power of 2. The sign bit denotes the
sign of the number: a O represents a positive value and a 1 denotes a
negative value. The mantissa is represented in binary after converting
It to its normalised form. The normalised form results in a mantissa
Whose most significant digit is always 1. The IEEE format takes
advantage of this by not storing this bit at all. The exponent is an
mtcger stored in unsigned binary format after adding a positive
integer bias. This ensures that the stored exponent is always positive.
The value of the bias is 127 for floats and 1023 for doubles.

46 _ Test Your C Skills §
o | Chapter 5
B _ y
Functions
A 117
C

Q 5.1

What would be the output of the following program?

main()
{
inta,b:
a=sumdig (123) ;
b = sumdig (123) ;
printf ("%d %d", a,b) ;

sumdig (intn)
{
staticints=0;
intd:
if(nl=0)
{
d=n%10;
n=(n-d)/10;
s=s+d;
sumdig(n);

}

else
retum(s);

48 Test Your C Skills

Q 52

What error would the following function give on compilation?

f(inta,inth)
{
inta;
a=20;
retuma;
}
A. Missing parentheses in return statement
B. The function should be defined as int f(int a, int b)
- C. Redeclaration of a
D. None of the above

Q 53

There is a mistake in the following code. Add a statement in it to
remove it.

i

main()
inta;
a=f(10,3.14);

printf ("%d", a) ;

}
f (int aa, float bb)

retumn ((float) aa+bb) ;

}

: Q 54

Chapter 5: Functions

Point out the error in the following code.

main()

inta=10;

void f() ;

a=f();

printf ("\n%d", a) ;
] _
void f()
{

- printf ("\nHi") ;

}

Q 55

Point out the error, if any, in the following function.

main()

{
inth;
B=1(20);
printf ("%d", b) ;

}

intf(inta)

a>207return(10): retum (20);

}

Q 56

A function cannot be defined inside another fuction. <True/False>

50 Test Your C Skills

Q 57

Will the following functions work? <Yes/No>

fi (inta,intb)

return (2 (20)) ;
}
f2 (inta)
retun(a*a);
}

QR ss

What are the following two notations of defining functions common-
ly known as:

inff (inta, floath)
{

/* some code */

}
intf(ab)

inta;floath:

{

/* some code */
}

Q 59

Ina function two return statements should never occur. <True/False>

Chapter 5: Functions 57

Q 510

In a function two return statements should never occur successively.
<True/False>

Q 511

In C all functions except main() can be called recursively.
<True/False>

Q 512

Usually recursion works slower than loops. <True/False>

Q 513

Is it true that too many recursive calls may result into stack overflow?
<Yes/No>

Q 514

How many times the following program would print ‘Jamboree’?

main()

{
printf ("\nJamboree") ;
main() ;

}

A. Infinite number of times
B. 32767 times
C. 65535 times

52 Test Your C Skills

Chapter 5: Functions 53
D. Till the stack doesn’t overflow A 56
Answers

A 51

6 12
A 52] 5.8
.jl:'
C "f he first one is known as ANSI notation and the second is known as
* ernighan and Ritchie or simply, K & R notation.
A 53
' 5.9
Add the following function prototype in main():
: Ise
float f (int, float) ;
5.10
A 54
3 e
In spite of defining the function f{) as returning void, the program is
trying to collect the value returned by £{) in the variable a. 2

A 55

Ise. Any function including main() can be called recursively.

return statement cannot be used as shown with the conditional

operators. Instead the following statement may be used: 0.12

return (a>20710:20);

4

Test Your C Skills

A 513
Yes

A 54

Chapter 6

The C Preprocessor

Q 61

If the file to be included doesn’t exist, the preprocessor flashes an
error message. <True/False>

Q 62

The preprocessor can trap simple errors like missing declarations,
nested comments or mismatch of braces. <True/False>

Q 63

What would be the ouput of the following program?

#define SQR(x) (x * x)
main()
{
inta,b=3;
a=SQR (b+2);
printf ("\n%d", a) ;
}

B 25
. 1]

56 Test Your C Skills

¢, Emor
D. Garbage value

Q 64

How would you define the SQR macro in 6.3 above such that it gives
the result of a as 25.

Q 65

~ What would be the output of the following program?

#define CUBE(x) (x *x*x)
main()
{

inta,b=3;

a=CUBE (b++);

printf ("\n%d %d", a, b) ;
}

Q 66

Indicate what would the SW AP macro be expanded to on preprocess-
ing. Would the code compile?

#define SWAP(a,b,c) (ct;t=a,a=b,b=t;)
main()
{

intx=10,y=20;

SWAP (x,y, int);

printf (“%d %d", X, y) ;

Chapter 6: The C Preprocessor

& 67

How would you modify the SWAP macro in 6.6 above such that it is
able to exchange two integers.

Q s

What is the limitation of the SWAP macro of 6.7 above?

Q@ 69

In which line of the following program an error would be reported?

#define CIRCUM(R) (3.14*R*R);
main()

1.

2.

3. {

4, floatr=1.0,¢:

5 ¢=CIRCUM (r);

6 printf ("\n%f", ¢) ;

7 if (CIRCUM (r)==6.28)

8 printf ("\nGobbledygook”) ;
9. 1}

Q 610

What is the type of the variable b in the following declaration?

#define FLOATPTR float *
FLOATPTR a, b ;

58 Test Your C Skills

Q 611

Is it necessary that the header files should have a .h extension?

Q 612

What do the header files usually contain?

Q@ 613

Would it result into an error if a header file is included twice?
<Yes/No>

Q 614

How can a header file ensure that it doesn’t get included more than
once?

Q 615

On inclusion, where are the header files searched for?

Q 616

Would the following typedef work?

typedef #include | : .

Q 617

i':
[
|

Chapter 6: The C Preprocessor

Would the following code compile correctly?
main()

#ifdef NOTE
/* unterminated comment
inta;
a=10;
#else
inta;
a=20;
#endif

printf ("%d", a);
}

Q 6.is \

‘What would be the output of the following program?

#define MESS Junk

.main{)

~ printf ("MESS");
}

Q 19

Would the following program print the message infinite number of
times? <Yes/No> '

#define INFINITELOOP while (1)

60 Test Your C Skills

main()

{
INFINITELOOP

printf ("\nGrey haired") ;
}

Q 620

WHat would be the output of the following program?

#define MAX(a,b) (a>b?a:b)
main()

{
intx;
X=MAX(3+2,2+7);
_printf ("%d", x) ;
}

Q 621

~ What would be the output of the following program?

#define PRINT(int) printf ("%d ", int)
main()
[iost
Mmx=2y=38,2=4;
PRINT (x);
. PRINT(y);
. PRINT(z);
} it

Q 622

What would be the output of the following program?

 Chapter 6: The C Preprocessor 61

gﬁ'ﬁdefine PRINT(int) printf ("int=%d *, int)

Inain()

Ll

intx=2,y=3,2=4;
PRINT (x) ;
PRINT (y) ;
PRINT (z);

Chapter 6: The C Preprocessor 63

62 Test Your C Skills

intx=4:
floata=3.14;
charch="A';

PRINT (a,b,c);

DEBUG (X, %d) ; :', nswers
DEBUG (a, %f); : 4
DEBUG (ch, %¢) ;

}

Q 62

What would be the output of the following program?

. True
- A 62
False

A 63

#define str(x) #x
#define Xstr(x) str(x)
#define oper multiply
main()

{

I" 4 B. Because, on preprocessing the expression becomesa = (3 + 2 *
2+ 3)

- A 64

-~ #define SQR(X) ((X)* (x))

A 65

char *opername = Xstr (oper) ;
printf ("%s", opername) ;

}
Q 6.27

Write the macro PRINT for the following program such that it
- outputs: ;

o7 6. Though some compilers may give this as the answer, according

:;‘{}’,;Zi;i ~ to the ANSI C standard the expression b++ * b++ * b++ is
- undefined. Refer Chapter 3 for more details on this.

main() 3

(A 66

intx=4,y=4,2=5;
inta=1,b=2,¢=3;

(intt;t=a,a=b,b=t;);
PRINT (x,y,2); E:

64 Test Your C Skills

This code won’t compile since declaration of ¢ cannot occur within
parentheses.

A 67

#define SWAP(a,b,c) ct;t=a,a=b,b=t;
A 68

It cannot swap pointers. For example, the following code would not
compile.

#define SWAP(a,b,c) ct;t=a,a=b,b=t;

main()

{

-~ floatx=10,y=20;
float *p, *q;
p=8x;q=4y;

SWAP (p, q, float*) ;
printf ("%f %{", x, y) ;
}

A 69

Line number 7, whereas the culprit is really the semicolon in line
number 1. On expansion line 7 becomes if ((3.14 *1.0 *1.0) ; ==
6.28). Hence the error.

A 610

float and not a pointer to a float, since on expansion the declaration
becomes:

float *a, b ;

Chapter 6: The C Preprocessor 65

A 611

No. However, traditionally they have been given a .h extension to
identify them as something different than the .c program files.

A 612

Preprocessor directives like #define, structure, union and enum dec-
larations, typedef declarations, global variable declarations and ex-
ternal function declarations. Y ou should not write the actual code (i.e.
function bodies) or global variable definition (that is defining or
initialising instances) in header files. The #include directive should
be used to puli in header files, not other .c files.

A 613

Yes, unless the header file has taken care to ensure that if already
included it doesn’t get included again.

A 614

All declarations must be written in the manner shown below. Assume
that the name of the header file is FUNCS.H.

I* funcs.h */
#ifndef _FUNCS

#define _FUNCS

/* all declarations would go here */
#endif

Now if we include this file twice as shown below, it would get
included only once.

Chapter 6: The C Preprocessor

66 Test Your C Skills
E
#include “goto.c" ¥ A 62
#include "goto.c" 5
{naln() { E o
/* some code */ § 3
} B A 6o
A 615 - W
If included using < > the files get searched in the predefined (can be A 6.22
changed) include path. If included with the " " syntax in addition to - int=2 int=3 int=4
the predefined include path the files also get searched in the current - i
directory (usually the directory from which you invoked the com-
piler). B A 623
,l fﬁ_ #define PRINT(int) printf (#int"=%d ", int)
A 616 main()
A 1o i =2,¥y=32=4:
No. Because typedef goes to work after preprocessing. I!::I;)I(NT (:) ;
3 PRINT (y);
A 617 - B PRINT(2):
<l }
iﬁi]?}:2 n;gﬁi?ﬁijgﬁiﬂtlz? t:;::aﬁzézli?gg;"ﬁ uirtldaerf;n::lg The rule is if the parameter name is preceded by a'# in the macro
itted & P Gl T expansion, the combination (of # and parameter) will be expanded
DR into a quoted string with the parameter replaced by the actual argu-
- ment. This can be combined with string concatenation to print the
A 6.18 ~ output desired in our program. On expansion the macro becomes
MESS printf (*x" " = %d", x) ;

A The two strings get concatenated, so the effect is
6.19

printf { "x = %d", x) ;
Yes

68 Test Your C Skills

A 624

Yes. The output would be TipsTraps. In fact this result has been used

in 6.23 above.

A 635

#define DEBUG(var, fmt) printf ('DEBUG:" #var " =" #fmt "\n", var)

A 63

multiply

Here two operations are being carried out expansion and stringizing.

Xstr() macro expands its argument, and then str() stringizes it.

A 627

#define PRINT(vart, var2, var3) printf ("\n" #vart * = %d * #var2 " = %d "
#vard " = %d ", var1, var2, var3)

il
i

Chapter 7

Pointers

Can you combine the following two statements into one?

char *p;
~ p=malloc(100);

Q 72
Can you split the following statement into two statements?

‘ char far *scr = (char far *) 0xB80000QOL ;

: Q 73

~ Are the expressions *ptr++ and ++ *ptr same?

Q 7.4

~ Can you write another expression which does the same job as
- ++¥ptr? . '

70 Test Your C Skills

QR 75

What would be the equivalent pointer expression for referring the
same element as afi][j][k][1]?

Q s

What would be the output of the following program?

main()

{
intar[]={12, 13, 14, 15,16} ;
printf ("\n%d %d %d", sizeof (arr), sizeof (*arr), sizeof (arf0])) ;

}

Q 77

What would be the output of the following program assuming that
the array begins at location 10027

main()
{
int a[3][4] = {
1,234,
5,6,7,8,
9,10, 11, 12

Ll I

printf ("\n%u %u %u", al0] + 1,* (a[0] + 1), *(*(a+0)+1));

; Chapter 7: Pointers

Q

~ the array begins at location 1002?
- main()

int a[2][3][4] = {

{
= 1,2,3,4,
56,78,
9:1,1,2
h
{
21,47
6,7,8,9,
0,0,0,0

b

printf ("\n%u %u %u %d", a, *a, *a, **a) ;

 In the following program how would you print 50 using p?
- main()
inta[]={10,20,30,40,50};

char*p;
p=(char*)a;

~ What would be the output of the following program assuming that

72 Test Your C Skills

Q 710

Where can one think of using pointers?

QR 711

In the following program add a statement in the function fun() such
that address of a gets stored in j.

.

main()
{
int % ;
void fun (int**) ;
fun (&)
}
void fun (int **k)
inta=10;
/* add statement here */
} A

Q 712

~ How would you declare an array of three function pointers where
each function receives two infs and returns a float?

Q 713

Would the following program give a compilation error or warning?
<Yes/No>

main()

apter 7: Pointers

73

floati=10,;
void *k ;
k=&i y
j=k;
printf ("\n%f", %j) ;

uld the following program compile?

()

inta=10,%;

void *K ;

j=k=&a;

Jt+;

k++ ;

printf ("\n%u %u", j, k) ;

7.15

1d the following code compile successfully?

()
printf ("%c", 7] "Sundaram"]) ;

74 Test Your C Skills

Answers

A 71

char *p =malloc (100) ;

A 72

char far*scr;
scr = (char far *) 0xB800000OL ;

A 73

No. *ptr++ increments the pointer and not the value pointed by it,
whereas ++ *ptr increments the value being pointed to by prr.

A 74

("ptr)++

; A 7.5

Cr(((t(ati)+j) k) +1)
A 76
10 2 2

A 77

1004 2 2 -

apter 7: Pointers 75

79

7.10

ot of places, some of which are:

Accessing array or string elements
Dynamic memory allocation
- Call by reference

- Implementing linked lists, trees, graphs and many other data
. structures

7.12
*ar3]) (int, int) ;

7.13

7§
¥

0. Here no typecasting is required while assigning the value to and
k because conversions are applied automatically when other
inter types are assigned to and from void *.

76 S Test Your C Skills

A 714

No. Anerror would be reported in the statement k++ since arithmetic
- on void pointers is not permitted unless the void pointer is ap-
propriately typecasted.

A 715

Yes. It would print m of Sundaram.

Chapter 8

More About Pointers

8.1

1e NULL pointer same as an uninitialised pointer? <Yes/No>

8.2

which header file is the NULL macro defined.

8.3

is it that for large memory models NULL has been deﬁncd as
and for small memory models as just 0?

8.4

at’s the difference between a null pointer, a NULL macro, the
CII NUL character and a null string?

ey

78 Test Your C Skills

Q ss

What would be the output of the following program?

#include “"stdio.h"
main()

{ .
inta,b=5;
a=b+NULL;
printf ("%d",a);
}

Q s7

Is the programming style adopted in 8.6 good?

Q ss

What would be the output of the following program?
#include "stdio.h"

“main()
{

}

Q s

’ How many bytes are occupied by near, far and huge pointers?

printf ("%d %d", sizeof (NULL), sizeof (")) ;

Chapter 8: More About Pointers 79

Q s10

What does the error "Null Pointer Assignment” mean and what causes
this error?

Q s.1iI

How do we debug a Null Pointer Assignment error?

Q s12

Can anything else generate a Null Pointer Assignment error?

Q s13

Are the three declarations char **apple, char *orange[], and char
cherry[][] same? <Yes/No>

Q s14

Can two different near pointers contain two different addresses but
refer to the same location in memory? <Yes/No>

Q s15

Can two different far pointers contain two different addresses but
refer to the same location in memory? <Yes/No>

80 ' Test Your C Skills

Q s1i6

Can two different hugg pointers contain two different addresses but
refer to the same location in memory? <Yes/No>

Q s17

Would the following program give any warning on compilation?

#include "stdio.h"

main()

{
int*pt,i=25;
void *p2 ;
pl=4&i;
p2=4&i;
p1=p2;
p2=pt;

} :

Q sis

Woula the following program give any warning on compilation?

#include "stdio.h"
main()
{
float *p1,i=25.50;
char*p2;
pl1=4&i;
p2=4&i;

- Q 520
| How would you eliminate the warning generated on compiling the

~ main()

.{

char far *scr ;
scr = 0xB8000000 ;
‘sor="A'"

following program?

char far *scr ;
scr = 0xB8000000 ;
o e

|
Q s21

How would you obtain a far address from the segment and offset
addresses of a memory location?

Q 522

How would you obtain segment and offset addresses from a far
address of a memory location?

S feid

R

82 Test Your C Skills

Q 523

In a large data model (compact, large, huge) all pointers to data are
32 bits long, whereas in a small data model (tiny, small, medium) all
pointers are 16 bits long. <True/False>

Q 524

A near pointer uses the contents of CS register (if the pointer is
pointing to code) or contents of DS register (if the pointer is pointing
to data) for the segment part, whereas the offset part is stored in the
16-bit near pointer <True/False>.

QR s25

What would be the output of the following program?

main()

{
char far *a = 0x00000120 ;
char far *b = 0x00100020 :
char far *c = 0x00120000 ;

if(a==b)

printf ("\nHello") ;
if(a==c)

printf ("\nHi") ;
H(b=c)

printf ("\nHello Hi*) ;
ifla>b&&a>cé&&b>c)

printf ("\nBye") ;

Chapter 8: More About Pointers 83

char huge *a = 0x00000120 ;
char huge *b = 0x00100020 ;
char huge *¢ = 0x00120000 ;

if(a==b)

printf ("\nHello") ;
if(a==c)

printf ("\nHi*) ;
if(b==c)

printf ("\nHello Hi*) ;
if(a>b&&ka>c&&b>c)

printf ("\nBye") ;

- Answers

A 31

No

A s2

In files "stdio.h" and "stddef.h"

A 383

Because in small memory models the pointer is two bytes long
whereas in large memory model s__ig is 4 bytes long.

84 Test Your C Skills

A 354

For each pointer type (like say a char pointer) C defines a special
pointer value which is guarenteed not to point to any object or
function of that type. Usually, the null pointer constant used for
representing a null pointer is the integer 0.

A 35

A null pointer is a pointer which doesn’t point anywhere,

A NULL macro is used to represent the null pointer in source «
It has a value 0 associated with it.

The ASCII NUL character has all its bits as 0 but doesn’t have any
relationship with the null pointer.

The null string is just another name for an empty string "".
A 36
5

A 87

No.

Only in context of pointers should NULL and 0 be considered
equivalent. NULL should not be used when other kind of 0 is
required. Even though this may work it is a bad style of programming.
ANSI C permits definition of the NULL macro as ((void *) 0),
which ensures that the NULL will not work in non-pointer contexts.

: Chapter 8: More About Pointers 85

-'A 8.8
A

 Anear pointer is 2 bytes long whereas a far and a huge pointer are 4
~ bytes long.

A s

| The Null Pointer Assignment error is generated only in sma?ll and
~ medium memory models. This error occurs in programs which at-
- tempt to change the bottom of the data segment.

~ In Borland’s C or C++ compilers, Borland places four zero bytes at
~the bottom of the data segment, followed by the Borland copyright
~ notice "Borland C++ - Copyright 1991 Borland Intl.". In the small
and medium memory models, a null pointer points to DS:0000. Thtle
- assigning a value to the memory referenced by this pointer lwnll
~ overwrite the first zero byte in the data segment. At program termina-
~ tion, the four zeros and the copyright banner are checked. If either
~ has been modified, then the Null Pointer Assignment error is
- generated. Note that the pointer may not truly be null, but may be a
~ wild pointer that references these key areas in the data segment.

A sz

- In the Integrated Development Environment set two watches on the
- key memory locations mentioned in 8.10. These watches, and what
~ they should display in the watch window. are:

*(char *)4,42MS Borland C++ - Copyright 1991 Borland Intl."

5 Test Your C Skills

(char *)0 00 00 00 00

Of course, the copyright banner will vary depending on your version
of the Borland C/C++ compiler.

Step through your program using F8 or F7 and monitor these values -

in the watch window. At the point where one of them changes, you
have just executed a statement that uses a pointer that has not been
properly initialized.

The most common cause of this error is probably declaring a pointer
and then using it before allocating memory for it. For example,

compile the following program in the small memory model and
execute it:

#include "dos.h"
#include "stdio.h"
#include "string.h"

main()
{
char *ptr, *banner ;
banner = (char*) MK_FP (_DS, 4);
printf ("banner: %s\n", banner) ;
strepy (ptr, "The world cup saga") ;
printf ("&ptr = %Fp\n", (void far*) &ptr[0]) ;
printf ("banner: %s\n", banner) ;

}

One of the best debugging techniques for catching Null pointer
assignment errors is to turn on all warning compiler messages. If the
above program is compiled with warnings turned off, no warning
messages will be generated. However, if all warnings are turned on,
both the strepy() and prinf() calls using the ptr variable will generate
warnings. You should be particularly suspicious of any warnings that
a variable might be used before being initialized, or of a suspicious
pointer assignment.

Chapter 8: More About Pointers - 87

Note that a Null Pointer Assignment error is not generated jn all
models. In the compact, large and huge memory models, far pointers
are used for data. Therefore, a null pointer will reference OOOO:OOQO,
or the base of system memory, and using it will not cause a corruption
of the key values at the base of the data segment. Modifying the base
of system memory usually causes a system crash, howeverl. Although
it would be possible that a wild pointer would overwrite the key
values, it would not indicate a null pointer. In the tiny memory rpodel,
DS = CS = SS. Therefore, using a null pointer will overwrite the
beginning of the code segment.

A s12

Yes, using a wild pointer that happens to reffarence_thc base area of
the data segment may cause the same error since this wpuld change
the zeros or the copyright banner. Since data corruption or stack
corruption could cause an otherwise-valid pointer to be corrgpted and
point to the base of the data segment, any memory co_rruptlon could
result in this error being generated. If the pointer used in the program
statement which corrupts the key values appears to have been proper-
ly initialized, place a watch on that pointer. Step through your
program again and watch for its value (address) to change.

A 513

No

A 514

" No

88 Test Your C Skills

Aaias
Yes

A 3516

A By

A 318
Yes. Suspicious pointer conversion in function main

A s19

Non-portable pointer assignment in function main.
A 820

Use the typecast scr = (char far *) 0xB8000000 ;

A 3521

#include "dos.h"

main()

{
char *seg = (char *) 0xB000 ;
char *off = (char *) 0x8000 ;

Chapter 8: More About Pointers 89

charfar’p ;
p=MK_FP (seg, off) ;

nclude "dos.h"
ain()

char far *scr = (char far *) 0xB8000000 ;
char *seg, *off ;

seg = (char*) FP_SEG (scr) ;

off = (char *) FP_OFF (scr) ;

£ ST A R = T S S R

8.23

oy 4™

8.24

8.25

Here «, b and ¢ refer to same location in memory still the first three
fail because while comparing the far pointers using == (and !=)
full 32-bit value is used and since the 32-bit values are different
the ifs fail. The last if however gets satisfied, because while compar-
using > (and >=, <, <=) only the offset value is used for
éﬁdmparsion. And the offset values of @, b and ¢ are such that the last
 condition is satisfied.

90 Test Your C Skills

A 532

Hello
Hi
Hello Hi

Unlike far pointers, huge pointer are ‘normalized’ to avoid the
strange behaviour as in 8.25 above. A normalized pointer is a 32-bit
pointer which has as much of its value in the segment address as
possible. Since a segment can start every 16 bytes, this means that
the offset will only have a value from O to F. Huge pointers are always
kept normalized. As a result for any given memory address there is
only one possible huge address - segment:offset pair for it.

Chapter 9

Arrays

What would be the output of the following program?

~ main()
~ chara[]="Visual C++";
~ char’b="Visual C++";
- printf ("\n%d %d", S|zeof(a), sizeof ((/b”)
~ printf ("\n%d %d", sizeof (*a), sizeof (*b)) ;

For the following statements would arr[3] and ptr[3] fetch the same
haracter? <Yes/No>:

char an|] = "Surprised” :
- char *ptr = "Surprised” ;

Q

For the statements in 9.2 does the compiler fetch the character arr/3]
“and prr[3] in the same manner?

92 Test Your C Skills

Q 94

What would be the output of the following program, if the array
begins at address 12007

main()
{
intarr[]={2,3,4,1,6};
printf ("%d %d", arr, sizeof (arr)) :

}

Q 95

Does mentioning the array name gives the base address in all the
contexts?

Q 96

What would be the output of the following program, if the array
begins at address 654867

main()

{
intarr{]={12, 14,15,23,45};
printf ("%u %u”, arr, &arr) ;

}

Q 97

Are the expressions arr and &arr same for an array of 10 integers?

@ 99

When are char a[] and char *a treated as same by the compiler?

3 .,-,-E'hapter 9: Arrays 93

Q 9s

i

~ What would be the output of the following program, if t*e array
- begins at 654867

- main()

intan[]={12,14,15,23,45};
printf ("%u %u", arr + 1, &arr+ 1) ;

char a[] = "Sunstroke" ;
char *p = "Coldwave" ;

a = "Coldwave" ;

p = "Sunstroke" ;

printf ("\n%s %s", a,p);

4 Q 911

~ What would be the output of the following program?

-~ main()

94 Test Your C Skills

floata[]={12.4,2.3,4.56.7 };
printf ("\n%d", sizeof (a)/ sizeof (a[0])) :
L

Q sz it \

|

A pointer to a block of memory is effectively same as an array,/
<True/False> |

Q 913

What would be the output of the following program if the array begins
at 654727 :

main()
(
int a[3][4] = {

S

i

3
2,
9

¥

S

2
3
8

oty i

H
printf ("\n%u %u",a+1,8a+1);

}

QR 914

What does the following declaration mean:

int (*ptr)[10] ;

Chapter 9: Arrays 95

-f_ Q 915

. If we pass the name of a 1-D inr array to a function it decays into a

pointer to an int. If we pass the name of a 2-D array of integers to a

- function what would it decay into? .

Q 9156

How would you define the function f{) in the following program?

int arr[MAXROW][MAXCOL] ;
fun(arr);

Q 9.17

What would be the output of the following program?

main()
{
int a[3][4] = {
' 1,2, 3,4,
4,828,
7,8,90
¥
int *ptr:
ptr = &a[0][0]
fun (&ptr) ;

}

fun (int**p)

f
1

printf (\nfed L P)
il
il

96 Test Your C Skills

Answers

A viol

112
1951

A g2

Yes

A 93

No. For arr[3] the compiler generates code to start at location arr,
move three past it, and fetch the character there. When it sees the
expression prr{3] it generates the code to start at location stored:in
ptr, add three to the pointer, and finally fetch the cha'i\z\lcter pointed
to.

In other words, arr[3]is three places past the start of the object named
arr, whereas ptr(3] is three places past the object pointed to by prr.

A 94

1200 10

A 95

: Nc_;. Whenever mentioning the array name gives its base address it is
said that the array has decayed into a pointer. This decaying doesn’t
take place in two situations:

Chapter 9: Arrays 97

When array name is used with sizeof operator.
When the array name is an operand of the & operator.

A 96

65486 65486

.A 9.7

No. Even though both may give the same adresses as in 9.6 they mean
two different things. arr gives the address of the first inr, whereas

- &arr gives the address of array of ints. Since these addresses happen

to be same the results of the expressions are same.
A 93
65488 65496

A 99
When using them as formal parameters while defining a function.

A 910

No, because we may assign a new string to a pointer but not to an
array.

A 95

98 Test Your C Skills

A 912
True
A 913

65480 65496

A 914
pLris a pointer to an array of 10 integers.
A 915

[t decays into a pointer to an array and not a pointer to a pointer.

A 916

fun (int a[J]MAXCOL])

{
}

or
fun (int (*ptr)] MAXCOL]) /* ptr is pointer to an array */

{
}

A 917 (

Chapter 10
Strings

Q 101

What would be the output of the following program?

main()
{

printf (5 + "Fascimile”) ;

et

Error

Fascimile

mile

None of the above

Q 102

What would be the output of the following program?

SEel-

main()
{
char str1]] = "Hello" ;
char str2[] = "Hello" ;
if (str1 ==str2)
printf ("\nEqual") ;
else

Chapter 10: Strings

101

100 Test Your C Skills
printf ("\nUnequal") ;

A. Equal

B. Unequal

C. Ewor

D. None of the above

Q 13

What would be the output of the following program?

main()
{
printf ("%c", "abcdefgh'[4]) ;
}
A. Error
BE- d
.. &
D. abcdefgh
Q 104

What would be the output of the following program?

main()

{
char str[7] = "Strings" ;
printf (“%s", str) ;

A.. Error
B. Strings
C. Cannot predict

| D. None of the above

Q 105

~ How would you output \n on the screen?

Q 16

What would be the output of the following program?

main()
{
charch="A",
printf ("%d %d", sizeof (ch), sizeof ('A’)) ;

——

What would be the output of the following program?

main()
{ :
printf ("\n%d %d %d", sizeof ('3'), sizeof ("3"), sizeof (3)) ;

} -

VIR B 1

B. 2.2 2

(82 W22

| P A

102 Test Your C Skills

QR 108

Is the following program correct? <Yes/No>

main()

{

char *str1 = "United" :
char *str2 = "Front" ;
char *str3 ;

str3 = strcat (str1, str2) ;
printf ("\n%s", str3) ;

} X

Q 19

How would you improve the code in 10.8 above?

Q w10

In the following code which function would get called, the user-
defined strepy() or the one in the standard library?

main()
{
char stri[] = "Keep India Beautiful... emigrate!”;
char str2{40] ;
strepy (str2, str1) :
printf ("\n%s", str2) :

} *
strcpy (char *t, char *s)
{

while (*s)

{

Chapter 10: Strings 103

t="s;
4+
S+

}

*1 = !\0? ;

}

Q 1011

Can you compact the code in strepy() into one line?

Q 1012

What would be the output of the following program?

main()
{
char *str]] = { "Frogs", "Do", "Not", "Die.", "They", "Croak!" } ;

printf ("%d %d", sizeof (str), sizeof (str[0])) ;
} : '

Q 1013

How would you find the length of each string in the program 10.12
above?

Q 1014

What is the difference in the following declarations?

char *p = "Samual";
char al] = "Samuel" ;

104 Test Your C Skills ._‘ Chapter 10: Strings 105
§
: -

Q 1015 E A 106

While handling a string do we always have to process it character by i B

character or there exists a method to process the entire string as one ¥

unit. J A
) 10.7

Answers

A 101

No, since what is present in memory beyond ‘United’ is not known
‘and we are attaching ‘Front’ at the end of *United’, thereby overwrit-
ing something, which is an unsafe thing to do.

A 109

main()

{

char str1[15] = "United" ;
char *str2 = "Front" ;
char *str3 ;

str3 = streat (stri1, str2) ;
printf ("\n%s", str3) ;

A 104

E
C. Here str/] has been declared as a 7 character array and into it a 8 3
character string has been stored. This would result into overwriting A 10.10
of the byte beyond the seventh byte reserved for the array with a '\’ ;
There is always a possibility that something important gets overwrit-
ten which would be unsafe.

A I05

printf ("\n") ;

User-defined strepy()

A 1011
strepy (char *t, char*s)

{

106 Test Your C Skills

while (*t++="s++) ;

for(i=0;i<=5;i++)
printf ("\n%s %d", strfi], strlen (strfi])) ;

) Chap:er 11
A 1012 Structures, Unions and
- : Enumerations
A 1013 I 3
main() g 3
{ L ¢
char *str] | = { "Frogs", "Do", "Not", ‘Die.", "They", "Croak!" } ; 1 Q L
int i; ,
i E ~ Whatis the similarity between a structure, union and anenume

}
A 1014

:,E'Would the following declaration work?

] .%:?:itypedef struct s
Here a is an array big enough to hold the message and the "\0’ B
following the message. Individual characters within the array can be 1

changed but the address of the array would remain same.

inta;
- floatb;

R ls;

Q 113

: Can a structure contain a pointer to itself?

3 Q 11.4

~ Point out the error, if any, in the following code.
. 4 y

On the other hand, p is a pointer, initialized to point to a string
constant. The pointer p may be modified to point to another string,
butif you attempt to modify the string at which p is pointing the result
is undefined. :

A 015

A string can be processed only on a character by character basis.

408 : Test Your C Skills

typedef struct
{

int data ;
NODEPTR link ;
} *NODEPTR;

Q 115

How will you eliminate the problem in 11.4 above?

Q 116

Point out the error, if any, in the following code.

void modify (structemp *) ;
struct emp
{
char name[20] ;
int age ;
bi
main()
{
struct emp e = { "Sanjay", 35} ;
modify (&e) ;
printf ("\n%s %d", e.name, e.age) ;
| _
void modify (struct emp *p)
{
strupr (p->name) ;
p->age =p->age+2;

}

apter 11: Structures, Unions and Entumerations 109

~ Would the following code work?

;.:5 #include <alloc.h>
~ struct emp
intlen;
char name[1] ;

 main()

1

4 char newname[] = "Rahul" ;

struct emp *p = (struct emp *) malloc (sizeof (structemp) -1 +
strlen (newname) +1);

p->len = strlen (newname) ;
strepy (p->name, newname) ;

printf ("\n%d %s", p->len, p->name) ;

b Can you suggest a better way to write the program in 11.7 above?
Q 119

How would you free the merhory allocated in 11.8 above?

110 : Test Your C Skills Chapter 11: Structures, Unions and Enumerations 111

: O structemp e2 =el ;
Q 1110 : 3 if (61 =62)
: printf ("The structures are equal") ;

Can you rewrite the program in 11.8 such that while freeing the .?_: b)
memory only one call to free() would suffice?
Q 1113

Q 1111
How would you check whether the contents of two structure variables

What would be the output of the following program? are same or not?

?“"“"” . . Q 1114
struct emp E
{ __ How are structure passing and returning implemented by the com-
char™n; = piler?
int age ;

}; ; Q 1115

struct emp e1 = { "Dravid", 23 } ;

structempe2 = et ;]
strupr (e2.n) ; : AP - How can I read/write structures from/to data files?

printf ("\n%s", e1.n);

) . Q 1116

Q 11.12 If the following structure is written to a file using fwrite(), can fread()
~ read it back successfully?

Point out the error, if any, in the following code.

- structemp
main() _. { i
{ struct emp .. icnt age ;,
g B oo
Ve L fwiite (8, sizeof (e),1,fp);

struct emp et = { "Dravid", 23} ;

112 Test Your C Skills

Q 1117

Would the following program always output the size of the structure
as 7 bytes?

struct ex

{
char ch;
inti;
longinta;

1
Q 1118

What error does the following program give and what is the solution
for it?

main()
ERi
struct emp
{
char name[20] ;
float sal ;
FAes
struct emp e[10] ;
inti;
for(i=0;i<=9;i++)
scanf ("%s %f", e[i.name, &eli].sal) ;

}

Q 1119

How can I determine the byte offset of a field within a structure?

Chapter 11: Structures, Unions and Enumerations 113

Q 1120

Z;::':f'. The way mentioning the array name or function name without /] or
() yields their base addresses, what do you obtain on mentioning the
- structure name?

- Q 1121

. What is main() returning in the following program.

struct transaction
.
a int sno ;
char desc[30] ;
chardc;
float amount ;

[Here is the main program, */
main (int arge, char *argv[])

B

~ struct transaction t ;

scanf ("%d %s %c %f", &t.sno, t.desc, &,dc, &.amount) ;
printf ("%d %s %c %f"; t:sno, t.desc, t,dc, tamount) ;

Q 1122
‘What would be the output of the following program?
- main()

struct a

114 Test Your C Skills

category : 5 ;
scheme : 4 ;

ii

printf ("size = %d", sizeof (structa));

}

Q 1133

What’s the difference between a structure and a union?

Q 1124

Is it necessary that size of all elements in a union should be same?

QR 1135

Point out the error, if any, in the following code.

main()
{
union a
{
inti;
char chf2];
1i

unionazi={512};
unionaz2={0,2};

}

Q 1136

Whatis the difference between an enumeration and a set of preproces-
sor #defines?

Chapter 11: Structures, Unions and Enumerations 115

Q 1127

Since enumerations have integral type and enumeration constants are
of type int can we freely intermix them with other integral types,
without errors? <Yes/No>

Q 1128

Is there an easy way to print enumeration values symbolically?

QR 1129

What is the use of bit fields in a structure declaration?

Q 1130

Can we have aﬁ array of bit fields? <Yes/No>

nswers

A 111
All of them let you define new data types.

A 112

Yes

116 Test Your C Skills

A 113
Certainly. Such structures are known as self-referential structures.

A 114

A typedef defines a new name for a type, and in simpler cases like
the one shown below you can define a new structure type and a
typedef for it at the same time.

typedef struct

{
char name[20] ;
int age ;

jemp;

However, in the structure defined in Q 11.4 there is an error because -

a typedef declaration cannot be used until it is defined. In the given
code fragment the fypedef declaration is not yet defined at the point
where the link field is declared.

A s

To fix this code, first give the structure a name ("'struct node"). Then
declare the [ink field as a simple struct node * as shown below:

typedef struct node
{

int data ;

struct node *link ;
} *NODEPTR ;

Another way to eliminate the problem is to disentangle the rypedef
declaration from the structure definition as shown below:

Chapter 11: Structures, Unions and Enumerations S

struct node
{
int data ;
struct node *link ;
1
typedef struct node *NODEPTR ;

Yet another way to eliminate the problem is to precede the structure
declaration with the rypedef, in which case you could use the

NODEPTR typedef when declaring the link field as shown below:

typedef struct node *“NODEPTR ;

struct node
{
int data ;
NODEPTR next ;
1

In this case, you declare a new typedef name involving struct node
even though struct node has not been completely defined yet; this
you're allowed to do. It’s a matter of style which of the above
solutions would you prefer. z

A 16

The struct emp is mentioned in the prototype of the function modify()
before defining the structure. To solve the problem just put the
prototype after the declaration of the structure or just add the state-
ment struct emp before the prototype.

A . 117

Yes. The program allocates space for the structure with the size
adjusted so that the name field can hold the requested name (not just

118 Test Your C Skills

one character, as the structure declaration would suggest). I don’t
know whether it is legal or portable. However, the code did work on
all the compilers that I have tried it with.

A 113

The truly safe way to implement the program is to use a character
pointer instead of an array as shown below:

#include <alloc.h>
struct emp
{

intlen :

char *name ;

L

main()
{ .
char newname[] = "Rahul* ;
struct emp *p = (struct emp *) malloc (sizeof (structemp)) ;

p->len = strlen (newname) ;
p->name = malloc (p->len+ 1) ;
strcpy (p->name, newname) ;

printf ("\n%d %s", p->len, p->name) ;

}

Obviously, the "convenience" of having the length and the string
stored in the same block of memory has now been lost, and freeing
instances of this structure will require two calls to the function free().

Ay

free (p->name) ;
free (p);

ke L SER R

A=

-
f
3
3
i

k)

Chapter 11: Structures, Unions and Enumerations 119

B A 1110

#include <alloc.h>
struct emp
{

intlen ;

char *name ;

1

main()

{

* char newname[| = "Rahul" ;

char *buf = malloc (sizeof (struct emp) + strlen (newname) + 1) ;
struct emp *p = (struct emp *) buf ;

p->len = strlen (newname) ;

p->name = buf + sizeof (struct emp) ;

strcpy (p->name, newname) ;

printf ("\n%d %s", p->len, p->name) ;

free (p);

A 1111

DRAVID

‘When a structure is assigned, passed, or returned, the copying is done

monolithically. This means that the copies of any pointer fields will

.' point to the same place as the original. In other words, anything
. pointed to is not copied. Hence, on changing the name through e2.n
- it automatically changed e/.n.

A 1110

Structures can’t be compared using the built-in == and != operations.

~ This is because there is no single, good way for a compiler to

120 Test Your C Skills

implement structure comparison. A simple byte-by-byte comparison
could fail while comparing the bits present in unused paddings in the
structure (such padding is used to keep the alignment of later fields
correct). A field-by-field comparison might require unacceptable
amounts of repetitive code for large structures. Also, any compiler-
generated comparison could not be expected to compare pointer
fields appropriately in all cases; for example, it’s often appropriate
to compare char * fields with stremp() rather than with ==.

A i

struct emp
{
char n[20] ;
int age
1is
main()
{
struct emp e1 = { "Dravid", 23 } ;
struct emp e2 ;
scanf ("%s %d", e2.n, &e2.age) ;
if (structcmp (e1,e2)==0)
printf (“The structures are equal") ;
else
printf ("The structures are unequal”) ;

}

structemp (struct emp x, structemp y)

{
if (stremp (x.n,yn)==0)
if (x.age == y.age)
retun (0) ;

return (1) ;

E .: Chapter 11: Structures, Unions and Enumerations 121

In short, if you need to compare two structures, you’ll have to write
- your own function to do so which carries out the comparison field by
~ field.

- TRY

When structures are passed as arguments to functions, the entire
- structure is typically pushed on the stack. To avoid this overhead
. many programmers often prefer to pass pointers to structures instead
- of actual structures. Structures are often returned from functions in a
- location pointed to by an extra, complier-supplied ‘hidden’ argument
~ to the function.

A 1115
1 - To write out a structure we can use fwrite() as shown below:

- fwrite (&e, sizeof (&), 1,1p) ;

'f where e is a structure variable. A corresponding fread() invocation
- can read the structure back from a file.

~ On calling fwrite() it writes out sizeof (e) bytes from the address &e.
- Data files written as memory images with fwrite(), however, will not

~ be portable, particularly if they contain floating-point fields or
~ pointers. This is because memory layout of structures is machine and
- compiler dependent. Different compilers may use different amounts
- of padding, and the sizes and byte orders of fundamental types vary
- across machines. Therefore, structures written as memory images
cannot necessarily be read back in by programs running on other

important concern if the data files you’re writing will ever be inter-
~ changed between machines.

- machines (or even compiled by other compilers), and this is an

122 Test Your C Skills

A 1116

No, since the structure contains a char pointer while writing the
structure to the disk using fwrite() only the value stored in the pointer
n would get written (and not the string pointed by it). When tl}is
structure is read back the address would be read back but it is quite
unlikely that the desired string would be present at this address in

memory.
AN

No. A compiler may leave holes in structures by padding the first
char in the structure with another byte just to ensure that the integer
that follows is stored at an even location. Also there might be two
extra bytes after the integer to ensure that the long integer is stored
at an address which is a multiple of 4. This is done because many
machines access values in memory most efficiently when the values
are appropriately aligned. Some machines cannot perform unaligned
accesses at all and require that all data be appropriately aligned.

Your compiler may provide an extension to give you controi over the
packing of structures (i.e., whether they are padded), perhaps with a
#pragma, but there is no standard method.

If you’re worried about wasted space, you can minimize the effects
of padding by ordering the members of a structure from largest to
smallest. You can sometimes get more control over size and align-
ment by using bitfields, although they have their own drawbacks.

A 1118

Error:Floating point formats not linked. What causes this error to
occur? When the compiler encounters a reference to the address of a
float, it sets a flag to have the linker link in the floating point emulator.

Chapter 11: Structures, Unions and Enumerations 123

A floating point emulator is used to manipulate floating point num-
bers in runtime library functions like scanf{) and atof{). There are
some cases in which the reference to the float is a bit obscure and the
compiler does not detect the need for the emulator.

These situations usually occur during the initial stages of program
development. Normally, once the program is fully developed, the
emulator will be used in such a fashion that the compiler can accurate-

~ly determine when to link in the emulator.

To force linking of the floating point emulator into an application,
Jjust include the following function in your program:

- void LinkFloat (void)
. ' {

floata=0, *b = &a; /* cause emulator to be linked */
a="b; /* suppress warning - var not used */

}

There is no need to call this function from your program.

A 1119

You can use the offset macro given below. How to use this macro

- has also been shown in the program.

| ddefine offset(type, mem) ((int) ((char)& ((type *) 0) - mem- (char*)

(type*)0))

i main()

_{

struct a

{
char name[15] ;
int age ;
float sal ;

1248 » . Test Your C Skills

}s
int offsetofname, offsetofage, offsetofsal ;

offsetofname = offset (struct a, name) ;
printf ("\n%d", offsetofname) ; '

offsetofage = offset (struct a, age) ;
wntf ("\t%d", offsetofage) ;

offsetofsal = offset (struct a, sal) ;
printf ("\t%d", offsetofsal) ;

}

The output of this program would be:

(0 VA8 = 0 U7
A 112
The entire structure itself and not its base address.

A 1121

A missing semicolon at the end of the structure declaration is causing
main() to be declared as returning a structure. The connection is
difficult to see because of the intervening comment.

A 1190

size =2

g 1t g D g

Chapter 11: Structures, Unions and Enumerations 125

Since we have used bit fields in the structure and the total number of
bits is turning out to be more than 8 (9 bits to be precise) the size of
the structure is being reported as 2 bytes.

A 113

A union is essentially a structure in which all of the fields overlay
each other; you can use only one field at a time. You can also write
to one field and read from another, to inspect a type’s bit patterns or
interpret them differently.

A 1194

No. Union elements can be of different sizes. If so, size of the union
is size of the longest element in the union. As against this the size of
a structure is the sum of the size of its members. In both cases, the
size may be increased by padding.

2 b

The ANSI C Standard allows an initializer for the first member of a
union. There is no standard way of initializing any other member,
hence the error in initializing z2.

Many proposals have been advanced to allow more flexible union
initialization, but none has been adopted yet. If you still want to
initialise different members of the union then you can define several
variant copies of a union, with the members in different orders, so
that you can declare and initialize the one having the appropriate first
member as shown below. :

union a

{

inti;

126 Test Your C Skills

charch[2] ;
b
union b
{
char ch[2] ;
inti;
1
main()
{
unionazi={512};
unionbz2=(0,2};
}

A 112

There is hardly any difference between the two, except that a #define
has a global effect (throughout the file) whereas an enumeration can
‘have an effect local to the block if desired. Some advantages of
enumerations are that the numeric values are automatically assigned
whereas in #define we have to explicitly define them. A disadvantage
is that we have no control over the sizes of enumeration variables.

A 1197
Yes

A 1198

No. You can write a small function (one per enumeration) to map an
enumeration constant to a string, either by using a swirch statement
or by searching an array.

Chapter 11: Structures, Unions and Enumerations 127

- A 1129

" Bitfields are used to save space in structures having several binary
flags or other small fields. Note that the colon notation for specifying
~the size of a field in bits is valid only in structures (and in unions);
- you cannot use this mechanism to specify the size of arbitrary
- variables.

BA 113

Chapter 12
Input/Output

- Q 121

What would be the output of the following program?

main()
{

inta=250;

printf ("% 1d",a) ;
}

Q 122

What would be the output of the following program?

main()

{
float a = 3,15529 ;
printf ("\n%6.2f", a) ;
printf ("\n%6.3f", a) ;
printf ("\n%5.4f", a) ;
printf ("\n%2.1f", a) ;
printf ("\n%0.0f", a) ;

130 Test Your C Skills

Q 123

In the following code

#include <stdio.h>
main()

{

FILE *fp ;

fp = fopen ("trial®, "r") ;
}
fp points to

A. The first character in the file

B. A structure which contains a char pointer which points to the
first character in the file

C. The name of the file

D. None of the above

Q 124

Point out the error, if any, in the followi ng program.

#include "stdio.h"

main()

{
unsigned char ;
FILE *fp ;

fp = fopen ("trial", "r*) ;
while ((ch =getc (fp)) I= EOF)
printf ("%c", ch) ;

fclose (fp) ;

Chapter 12: Input/Output

131

QO Cows

Q 125

Point out the error, if any, in the following program.

#include "stdio.h"
main()
{
unsigned char ;
FILE *fp ;

fp = fopen ("trial", *r*) ;
it ('p)

{
printf (“Unable to open file") ;

exit() ;
}
felose (fp) ;

Q 126

_If a file contains the line "I am a boy\r\n" then on reading this line
- into the array str using fgets() what would str contain?

"I am a boy\r\n\0"
"I am a boy\r\0"
"I am a boy\n\0"
"I am a boy"
12,7

- Point out the error if any in the following program.

~ #include "stdio.h"

132 _ Test Your C Skills

main()

{
FILE *fp;

fp = fopen ("trial’, 'r") ;
fseek (fp, 20, SEEK_SET) ;
fclose (fp) ;

}

Q 123

To printout g and b given below, which printf() statement would
use?

floata=3.14;

double b=3.14 ;

A. prntf ("%t %f", a,b):

B. printf ("%Lf %f",a,b);
C. printf ("%Lf %Lf", a,b);
D. printf ("%f %Lf",a,b);

QR 129
To scan a and b given below which scanf{) statement would you use?

floata:
double b :

scanf ("%f %f", &a, &b) ;
scanf ("%Lf %Lf{", &a, &b) ;
scanf ("%f %Lf", &a, &b) ;
scanf ("%f %If", &a, &b) ;

oDNw>

133

Chapter 12: Input/Output

R Q 210
}f Point out the error in the following program.

 include "stdio.h"

main()

{
FILE *fp ;
char str[80] ;

fp = fopen ("trial", r*) ;
while (!feof (fp))

{
fgets (str, 80,fp);
puts (str);

}

fclose (fp) ;

- Q nu
4 Point out the error in the following program.

- #include "stdio.h"

. main()
{
charch;
inti;
scanf ("%c", &i) ;
‘scanf ("%d", &ch) ;

printf (*%c %d", ch, i) ;

134 Test Your C Skills

QR 12

What would be the output of the following program?

main()

{
printf ("\n%%%%") ;
}

Q 1213

Point out the error, if any, in the following program?

#include "stdio.h"
main()

{
FILE *fp ;

fp = fopen ("c:\tc\trial®, "w") ;
if (fp)
exit() ;
fclose (fp) ;
}

Q 1214

Would the follwing code work? <Yes/No> If yes, what would be the
output? '

main()
{
intn=5;
printf ("\nn=%*d", n,n) ;

}

Chapter 12: Input/Output _ 135

Q 1215

What is the * in the printf() of 12.14 indicative of?

Q 1216

Can we specify variable field width in a scanf{) format string?
<Yes/No>

Q 1217

To tackle a double in printf() we can use %f, whereas in scanf() we
should use %lf. <True/False>

Q 1218

Out of fgets() and gets() which function is safe to use?

Q 1219

A file written in text mode can be read back in binary mode.
<True/False>

Q 1220

We should not read after a write to a file without an intervening call
to fflush(), fseek() or rewind(). <True/False>

136 Test Your C Skills

Answers

A 121
250

A 122

3.16
3.155
3.1553
32
3

A 123
B

A 104

* EOF has been defined as #define EOF -1 in the file "stdio.h" and an
unsigned char ranges from 0 to 255 hence when EOF is read from

the file it cannot be accommodated in ch. Solution is to declare ch as
an int.

A 125

No error.

A 126

&

A 1211

Chapter 12: Input/Output 137

A 127

Instead of 20 use 20L since fseek() needs a loﬁg offset value.

A 128

A. It is possible to print a double using %f.

FA 210

The last line from the file "trial" would be read twice. To avoid this,

. use:

while (fgets (str, 80, fp) = NULL)
puts (str) ;

~ You would not get a chance to supply a character for the second

scanf{) statement. Solution is to precede the second scanf{) with the

;: following statement.
- fflush (stdin);

~ This would flush out the enter hit for the previous scanf{) to be flushed
- out from the input stream, i.e. keyboard.

"

138 . Test Your C Skills Chapter 12: Input/Output 139

A 1212 A 1218

fgets(), because unlike fgets(), gets() cannot be told the size of the
buffer into which the string supplied would be stored. As aresult there
is always a possibility of overflow of buffer.

Jo%e

A 1213

Tl L2t A 1219

‘I'he path of the filename should have been written as "c:\\tc\\trial".

Fal
A 1214 5

A 1220
Yes.
=5 True
A 1215

It indicates that an int value from the argument list will be used for
field width. In the argument list the width precedes the value to be
printed. In this case the format specifier becomes %5d.

A 1216

No. A “** inscanf{) format string after a % sign is used for suppression
of assignment. That is, the current input field is scanned but not -
stored.

A 1217

" True

Chapter 13

Command Line Arguments

E Q 131
) What do the the ‘c” and *v’ in argc and argv stand for?

Q 132

According to ANSI specifications which is the correct way of declar-
ing main() when it receives command line arguments?

A. main (int argc, char *argv[])
B. main (argc, argv)

int argc ; char *argv[] ;
C. main() :

{

}

D. None of the above

Q 133

What would be the output of the following program? .

int argc ; char *argv[] ;

* sample.c */
main (int argc, char **argv)

142 Test Your C Skills

{
argc=argc-(arge-1);
printf ("%s", argv[argc - 1]) ;

}

Q 134

If different command line arguments are supplied at different times
would the ouptut of the following program change? <Yes/No>

main (int arge, char *argv[])
{

}

Q 13-

If the following program (myprog) is run from the command line as

printf ("%d", argvlarge]) ;

myprog 1 2 3

what would be the output?
main (int argc, char *argv{])
{ inti;

for(i=0;i<argc;i++)
printf (*%s *, argv[i]) ;

Q 136

If the following program (myprog) is run from the command line as

;

A
PB 6
b C

Chapter 13: Command Line Arguments 143

! . myprog 12 3

~what would be the output?

main (int argc, char *argv(])

inti;
i = argv[1] + argv[2] + argv(3] ;
printf ("%d", i) ;

_‘ A. 123

BB 6

. ' Error
D W2s

i If the following program (myprog) is run from the command line as

myprog 1 2 3

what would be the output?

 main (int argc, char *argv[])

E

inti,j=0;
for(i=0;i<argc;i++)
=] +atoi (argvfi]);

printf (*%d",) ;

123

Error

144 Test Ybur C Skills

Chapter 13: Command Line Arguments 145

D' "123"

Q 1i3s

Would the following program give the same output at all times?
<Yes/No>

main (int argc, char *argv[])
{
strepy (argv[0], "hello") ;
strcpy (argv[1], "good morining") ;
printf ("%s %s", argv[0], argv(1]) ;
}

Q 139

- If the following program (myprog) is run from the command line as
myprog one two three
what would be the output?

main (int argc, char *argv[])

{
}

Q 13.10.

If the following program (myprog) is run from the command line as

printf ("%s", *++argv) ;

myprog one two three

what would be the output?

main (int argc, char *argv(])

{
}

Q 1311

The variables argc and argv are always local to main <T rue/False>.

Q 11312

The maximum combined length of the command line arguments
including the spaces between adjacent arguments is

printf ("%c", ++*++argv) ;

A. 128 characters

B. 256 characters

C. 67 characters :

D. It may vary from one operating system to another

Q 1313

What will the following program output?

main (int argc, char *argv[], char *env[1)
{
inti;
for(i=1;i<argc;i++)
printf ("%s ", env(i]) ;

}

A. List of all environment variables

B. List of all command line arguments
2 s Error

L NTE]

146 . \Test Your C.Skills

QR 1314

If the following program (myprog) is run from the command line as
myprog **.c"
what would be the output?

main (int argc, char *argv[])

{

inti;

for(i=1;i<arge;i++)
printf (“%s *, argv[i]) ;

A e

B. Listof all .c files in the current directory
Corulitel

D. None of the above

Q 131

If the following program (myprog) is run from the command line as
myprog *.c
what would be the output?

main (int argc, char *argv[])

{ _

inti;

for (i=1;i<arge;i++)
printf ("%s *, argv(i]) ;

Chapter 13: Command Line Arguments 147
A e (ol

B. Listof all .c files in the current directory

. o Ren

D None of the above

Q 116

If we want that any wildcard characters in the command line argu-:
ments should be appropriately expanded, are we required to make
any special provision? If yes, which?

Q 1317

Does there exist any way to make the command line arguments
available to other functions without passing them as arguments to the
function? <Yes/No>

Q 1318

If the following program (myprog) is run from the command line as
myprog Jan Feb Mar

what would be the output?

A #include "dos.h"

main()

fun();

}

fun()

{
inti;
for(i=0;i<_arge;i++)

148 Test Your C Skills

printf ("%s *, _argv(i]) ;
}

Q 1319

If the following program (myprog) is present in the directory
c\bc\tucs then what would be its output?

main (int argc, char *argv[])

{
printf ("%s ", argv[0]) ;

}

A MYPROG

B. CABC\TUCS\WMYPROG
(B Error

D C:\BC\TUCS

Q 1320

Which is an easy way to extract myprog from the output of program
13.19 above?

Q 1321

Which of the following is true about argv?

A. Itis an array of character pointers

B. . Itisa pointer to an array of character pointers
C. 1Itis an array of strings . :
D. None of the above

Chapter 13: Command Line Arguments 149

Q 1322

If t_he following program (myprog) is run from the command line as
myprog monday tuesday wednesday thursday

what would be the output?

main (int argc, char *argv(])

{

while (--argc>0)
printf ("%s *, *++argv) ;

et

myprog monday tuesday wednesday thursday
monday tuesday wednesday thursday

myprog tuesday thursday

None of the above

Q 1323 .

If the following program (myprog) is run from the command line as

Cawp

myprog friday tuesday sunday
what would be the output?
main (int argc, char *argv(])

printf ("%c", (*++argv)[0]) ;

C. myprog

150 Test Your C Skills Chapter 13: Command Line Arguments 151

D. friday 4 C. m

13.24.
¢ = Q 132

If the following program (myprog) is run from the command line as

If the following program (myprog) is run from the command line as

myprog friday tuesday sunday ey d
myprog friday tuesday sunday

what would be the output?
what would be the output?

main (int arge, char *argv[])

{ ~ main (int sizeofargv, char *argv[])

printf ("%c", **++argv) ; e {
} | while (sizeofargv)

3 printf ("%s *, argv[--sizeofargv]) ;
AL m }
B)
@ myprog A. myprog friday tuesday sunday
D. friday B. myprog friday tuesday
C. sunday tuesday friday myprog

Q 13.95. D. sunday tuesday friday
If the followiﬂg program (myprog) is run from the command line as ’ nSwers
myprog friday tuesday sunday A 131
what would be tae onfput) : Count of arguments and vector (array) of arguments

main (int argc, char *ar .
: gc ov(]) A

printf ("%c", *++argv[1]) ; B

A r : E
B. f B A 133

152

Test Your C Skills

C:\SAMPLE.EXE
A 134

No

A 135
C:AMYPROGEXE 1 2 3
A 136

c

A 137

B. When atoi() tries to convert argv[0] to a number it cannot do so

(argv[0] being a file name) and hence returns a zero.

A 138
No

A 139
one
A 1310

Chapter 13: Command Line Arguments

153

A 1311
; True rs
A 312

D
A 1313
B
A 1314
A
;_A.- 13.15

A

- A 1316

Yes. Compile the program as

- tcc myprog wildargs.ob

- This compiles the file myprog.c and links it with the wildcard

expansion module WILDARGS.ORJ, then run the resulting ex-

~ecutable file MYPROG.EXE

154 Test Your C Skills - Chapter 13: Command Line Arguments 155

If you want the wildcard expansion to be default so that you won’t 3 printf ("\n%s\n%s\n%s\n%s", drive, dir, name, ext) ;
have to link your program explicitly with WILDARGS.OBJ, you can P}

modify your standard C?.LIB library files to have WILDARGS.OBJ

linked automatically. To achieve this we have to remove SETARGV A 139 1’

from the library and add WILDARGS. The following commands will

invoke the Turbo Librarian to modify all the standard library files .
(assuming the current directory contains the standard C libraries, and A
WILDARGS.OBJ): ' ;

b cs -setargy +wildargs A 1322
flib cc -setargv +wildargs

tlib cm -setargv +wildargs § B

tlib cl -setargv +wildargs 3

tlib ch -setargv +wildargs A 13.93
A 1317 | k.

Yes. Using the predefined variables _argc, _argv.] A 13.94
A 1318 k.

C:\MYPROG.EXE Jan Feb Mai :
PA 1325

A 1319 :
A
B |
; A 133
A 1320 ! 3
#include *dirh" f C

main (int argc, char *argv[])

char drive[3], dir{50], name[8], ext[3] ;
printf ("\n%s", argv[0]) ;
fnsplit (argv[0], drive, dir, name, ext) ;

Chapter 14

Bitwise Operators

- Q 141

What would be the output of the following program?

- main()

{
inti=32,)j=0x20,k I, m;
k=ilj;
l=i&j;
m=kAl;
printf ("%d %d %d %d %d", i, j, k, |, m) ;

}

A 323232320

B. 00000

§C. 032323232

P 53282323232

- Q 142
What would be the output of the following program?
main()

{

unsigned intm =32 ;

158 Test Your C Skills

printf ("%x", ~m) ;

At

A AHE
B. 0000
(SR
D.

>, ddfd
Q 143

What would be the output of the following program?

main()

{

unsigned int a = Oxffff ;
~g I

printf (“%x", a) ;

—

Saw»>

ffff

0000

00ff

None of the above

Q 144
Point out the error in the following program.
main()

{

unsigned inta, b, ¢, d, e, f;

Chapter 14: Bitwise Operators 159

dl=2;

ed=2;

f~=2;

printf ("\n%Xx %X %x %X %X %x", a, b, ¢, d, e, f) ;
} R :

Q 145

To which numbering system can the binary number
1011011111000101 be easily converted to?

Q 146

Which bitwise 6perator is suitable for checking whether a particular
bit is on or off?

Q 147

Which bitwise operator is suitable for turning off a particular bitin a
number?

Q 1438

Which bitwise operator is suitable for putting on a particular bitin a
number?

Q 149

On left shifting, the bits from the left are rotated and brought to the
right and accommodated where there is empty space on the right?
<True/False>

160 Test Your C Skills

Q 1410

Left shifting a number by 1 is always equivalent to multiplying it be
2. <Yes/No>

Q 1411

Left shifting an unsigned int or char by 1 is always equivalent to
multiplying it be 2. <Yes/No>

Q 1412

What would be the output of the following program?

main() '
unsigned char i = 0x80 ;
printt ("\n%d",i<<1);

}

A0

Bassas5s

Ca 100

D. None of the above

Q 1413

What is the following program doing?

main()

{
unsigned int m[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 080 } ;
unsigned char n, i ;

Chapter 14: Bitwise Operators

161

scanf ("%d", &n) ;
for(i=0;i<=7;i++)
if (n & mi])

printf (“\nyes") ;

et

A. Putting off all bits which are on in the number n

B. Testing whether the individual bits of n are on or off
C. This program would give an error

D. None of the above

QR 1414

What does the following program do?

main()
{
char*s;
s=fun(128,2);
printf ("\n%s", s) ;
}
fun (unsigned int num, int base)
{
static char buff[33] ;
char *pir;

ptrz&buﬁ{sizeof{buﬂ):1 I
“ptr =0
do

{
*--ptr = "0123456789abcdef’[num % base | ;

num /= base ;

162 Test Your C Skills

} while (num!=0);

return ptr ;
}
A. It converts a number to given base
B. It gives a compilation error
C. None of the above

QR 1415

#define CHARSIZE 8

#define MASK(y) (1 <<y % CHARSIZE)

#define BITSLOT(y) (y / CHARSIZE)

#define SET(x, y) (X[BITSLOT(y)] I= MASK(y))

#define TEST(x, y) (X[BITSLOT(y)] & MASK(y))

#define NUMSLOTS(n) ((n + CHARSIZE - 1)/ CHARSIZE)

Given the above macros how would you
- declare an array arr of 50 bits

- putthe 20" bit on
- test whether the 40" bit is on or off

Q 1416

Consider the macros in Problem 14.15 above. On similar lines can
you define a macro which would clear a given bit in a bit array?

Q 1417

What does the following pfogram do?

main()

Chapter 14: Bitwise Operators 163

unsigned int num ;
intc=0;
scanf ("%u", &num) ;
for (; num;num>>=1)
{
if (num & 1)
CH+;

}
printf ("%d", c) ;

st

It counts the number of bits which are on in the number num.
It sets all bits in the number num to 1.

It sets all bits in the number num to 0.

None of the above

Q 1418

What would be the output of the following program?

cCawp

main()

{
printf ("\n%x", -1>>4) ;

et

ffff
Offf
0000
fffo

QR 1419

In the statement expressionl >> expression2 if expressionl is a
signed integer with its leftmost bit set to 1 then on right-shifting it the

S Nwp

Chapter 14: Bitwise Operators 165

164 Test Your C Skills
result of the statement would vary from computer to computer. __ A 13
<True/False> 3

QR 1420

What does the following program do?
Error is in f ~= 2, since there is no operator like ~=.

main()
{ 3
unsigned int num ; A 145
inti;
scanf ("%u’, &num) . Hexadecimal, since each 4-digit binary represents one hexadecimal
for (i=0;i<16;i++) ; - digit.
printf ("%d", (num <<i& 1<<15)?1:0); ._
}
A 16
A. Itprints all even bits from num _
B. It prints all odd bits from num [The & operator
C. It prints binary equivalent of num '
D. None of the above
- A 147
Answers

The & operator

A 141 '
A 148

A

A 142

The | operator

A 149

(&
False

166 Test Your C Skills
A 1410

No

A 1411

Yes

A 1412

B

A 1413

B

A 1414

A

A 1415

char an[NUMSLOTS(50)]:
SET(arr, 20) ;

if (TEST (arr, 40))
A 1416

#define CLEAR(x, y) (x[BITSLOT(y)] &= ~MASK(y))

Chapter 14: Bitwise Operators

167

14.19

~ A.On computers which don’t support sign extension you may get B.

Chapter 15
Subtleties of typedef

- Q 151

Are the properties of i, j and x, y in the following program same?
- <Yes/No>

- typedef unsigned long int uli ;

i
- unsigned long int x, y;

Q 152

- What is the type of compare in the following code segment?

 typedef int (*ptrtofun)(char *, char*) ;
~ ptriofun compare ;

QR 153

j_ What are the advantages of using fypedefin a program?

170 ' Test Your C Skills

Q 154

Is there any differnce in the #define and the rypedefin the following
code? If yes, what?

typedef char * string_t;
#define string_d char *
string_t st, s2,
string_d s3, s4;

Q 155

typedeﬁs have the advantage that obey scope rules, that is, they can
be declared local to a function or a block whereas #defines always
have a global effect. <True/False>

Q 156

Point out the error in the following declaration and suggest atleast
three solutions for it.

typedef struct
{
int data ;
NODEPTR link ;
} *NODEPTR ;

X %
Q 157

In the following code can we declare a new fypedef name emp even
though struct employee has not been completely defined while using

typedef? <Yes/No>

' Q 1538

- There is an error in the following declarations. Can you rectify it?

Chapter 15: Subtleties of typedef 171

typedef struct employee *ptr ;

- struct employee
char name[20] ;
int age ;
ptr next ;

b

- typedef struct

~ }APTR;

. }'BPTR;

- Q 159

int datai ;
BPTR link1 ;

. typedef struct
E {

int data2 ;
APTR link2 ;

' What do the following declarations mean?

3 typedef char *pc ;

- typedef pe fipe() ;

. typedef foc *pfpc ;
. ypedef pfpc fpfpe() ;

- typedef fpfpc *pfpfpc ;

- pipfpc alN];

Test Your C Skills
172 _ e Chapter 15: Subtleties of typedef A

Q 1510

How would you define a/N] in 15.9 above without using typedef?
Q 1511

Improve the following code using typedef.

Q 1514

In the following code is p2 an integer or an integer pointer?

typedef int * ptr ;
ptrp1, p2;

Answers
struct node y

{ _
int datai : float data2;

struct node *left ;
struct node *right ;
b
struct node *ptr ;
ptr = (struct node *) malloc (sizeof (struct node)) ;

Q 1512

Is the following declaration acceptable? <Yes/No>

It is a pointer to function which receives two character pointers and
returns an integer.

A 153

typedef long no, *ptrtono ;
non;
ptrtono p ;

Q@ 1513

In the following code what is constant, p or the character it is pointing
to?

- There are three main reasons for using typedefs:

(a) It makes writing of complicated declarations a lot easier. This
helps in eliminating a lot of clutter in the program.

(b) Ithelps in achieving portability in programs. That is, if we use
typedefs for data types that are machine-dependent, only the
typedefs need change when the program is moved to a new
machine platform.

(c) Ithelps in providing a better doumentation for a program. For
example, a node of a doubly linked list is better understood as
ptreolist rather than just a pointer to a complicated structure.

typedef char * charp ;
constchamp p;

174 Test Your C Skills

A 154

In these declarations, s/, s2, and 53 are all trcafed as char *, but s4 1s

treated as a char, which is probably not the inetention.

A 155
True

A 156

A typedef declaration cannot be used until it is defined, and in our

example it is not yet defined at the point where the link field is

declared.
We can fix this problem in three ways:

(a) Give the structure a name, say node and then declare the link
field as a simple struct node * as shown below:

typedef struct node
{

int data ;

struct node *link ;
} *NODEPTR ;

(b) Keep the typedefdeclaration separate from the structure defini-
tion:

struct node
{

int data ;

struct node *link ;
ki

Chapter 15: Subtleties of typedef {73

typedef struct node * NODEPTR ;

(c) Precede the structure declaration with fypedef, so that you can
use the NODEPTR typedef when declaring the link field:

typedef struct node *NODEPTR ;
struct node
{

int data ;

NODEPTR link ;

The problem with the code is the compiler doesn’t know about BPTR
when it is used in the first structure declaration. We are violating the
rule that a typedef declaration cannot be used until it is defined, and
in our example it is not yet defined at the point where the link! field
is declared.

To avoid this problem we can define the structures as shown below:

struct a
{
int datai ;
struct b *link1 ;
i
struct b
{
int data2 ;
struct a *link2 ;

176 Test Your C Skills

)i

typedef sruct a *APTR ;
typedef struct b *BPTR ;

The compiler can accept the field declaration struct b *ptr] within
struct a, even though it has not yet heard of struct b (which is
“incomplete" at that point). Occasionally, it is necessary to precede
this couplet with the line

structb ;

This empty declaration masks the pair of structure declarations (if in
an inner scope) from a different struct b in an outer scope. After
declaring the two structures we can then declare the typedefs
separately as shown above.

Alternatively, we can also define the typedefs before the structure
definitions, in which case you can use them when declaring the link
pointer fields as shown below:

typedef struct a *APTR;
typedef struct b *BPTR;
struct a
{
int datat ;
BPTR link1 ;
¥
structb
{
int data2 ;
APTR link2 :
)

Chapter 15: Subtleties of typedef J77

A 159

pc is a pointer to char.

fpc is function returning pointer to char

pfpc ' is pointer to a function returning pointer to char

fpfpc is a function returning pointer to a function
returning pointer to char

pfpfpc Is a pointer to function returning pointer to a
function returning pointer to char

pfpfpc a[N] is an array of N pointers to functions returning
pointers to functions returning pointers to
characters

A 1510
char *(*(*a[NID())() ;

A 1511

typedef struct node * treeptr
typedef struct node
{
int datat ;
float data? ;
treeptr *left ;
treeptr *right ;
} treenode ;
treeptr ptr;
ptr = (treeptr) malloc (sizeof (treenode)) ;

A 5

Yes

178 Test Your C Skills

A 1513 Chapter 16

p s constant The const Phenomenon
A 1514

Integer pointer

Q 161

Point out the error in the following program.

main{()

{

constintx;

x=128:

printf ("%d", X) ;
}

Q 162

What would be the output of the following program?

main()

{
inty=128;
constintx=y;

printf ("%d", x) ;

——

A 128
B. Garbage value
C. Error

180 Test Your C Skills

| B]

Q 163

What would be the output of the following program?

main()

{
const int x =get() ;
printf ("%d", x) ;

}
get()
W
return (20) ;
}
L AL
B. Garbage value
C. 'Ewor
B0
Q 164

Point out the error, if any, in the following program.

#define MAX 128
main()
{
const int max = 128 ;
char array[max] ;
char string[MAX] ;
array[0] = string[0] ='A’;
printf ("%¢ %c", array[0], string[0]) ;

Chapter 16: The const Phenomenon 181

Q 165

Point out the error in the following program.

main()

{
char mybuff] = "Zanzibar" ;
char yourbuf[] = *Zienckewiz" ;
char * const ptr = mybuf ;
‘pir="a';
ptr = yourbuf ;

}

Q 166

Point out the error in the following program.

main()

{
char mybuf]] = "Zanzibar" ;
char yourbuff | = "Zienckewiz" ;
const char *ptr = mybuf ;
‘ptr="a";
ptr = yourbuf ;

}

Q 167

Point out the error in the following program.
main()

char mybuf[] = “Zanzibar" ;
const char * const pir = "Hello" ;

182

Test Your C Skills

Chapter 16: The const Phenomenon

183

ptr = mybuf ;
iptr i !M! ;
}

Q 168

What does the following prototype indicate?

strepy (char *target, const char *source)

Q 169

What does the following prototype indicate?

const char *change (char *, int)

Q 1610

Point out the error in the followin g program.

main()

{
const char *fun() ;
char *ptr = fun() ;

}
const char *fun()
{
return "Hello" ;
}

Q 1611

Is there any error in the following program? <Yes/No>

main()

const char *fun() ;
char *ptr =fun() ;

}

const char *fun()

return "Hello" ;

}

Q 1612

Point out the error in the following program.

main()

{
const char *fun() ;
*un() ="A;

}

const char *fun()

return "Hello" ;

}

Q 1613

What do you mean by const correctness?

QR 1614

What would be the output of the foilowi_ng program?

main()

{

184 Test Your C Skills

constintx=5;
int *ptrx ;

ptrx = &x ;.

*ptrx =10;

printf ("%d", x) ;

s

5

10

Error

Garbage value

Q 1615

What would be the output of the following program?

OO0 wp

main()

{
constintx=5;
~ const int *ptrx ;
ptrx = &x ;
*pirx=10;
printf ("%d", x) ;

—

5
10

~ Error
Garbage value

Q 1616

Point out the error in the following program.

o 0wy

main()

} Chapter 16: The const Phenomenon

185

constintk=7;
int * const q = &k ;
printf (“%d", *q) ;

Q 1617

- What is the difference in the following declarations?

. constchar *s;
- charconst’s;

P Q 1618

~ What is the difference in the following declarations?

~ const char * consts ;-
- charconst * consts ;-

:_ QR 1619

s the following a properly written function? If not, why not?

"~ intfun (constintn)

inta;
a=n"n;
retum a

186 Test Your C Skills

Answers

A 161

Nowhere other than through initialization can a program assign a
value to a const identifier. x should have been initialised where it is

declared.

A 180

A 164

The dimension of an array must always be a positive non-zero integer
constant which max is not.

A 165

ptr pointer is constant. In ptr = yourbuf the program is trying to
modify it, hence an error.

A ‘166

ptr can be modified but not the object that it is pointing to. Hence
*ptr = "A’ gives an error.

Chapter 16: The const Phenomenon 187

A 167

ptris a constant pointer to a constant object. We can neither modify
ptr nor the object it is pointing to.

P A 65

~ We can modify the pointers source as well as rarget. However, the

object to which source is pointing cannot be modified.

A 169

] The function change() receives a char pointer and an inf and returns

a pointer to a constant char.

A 1610

Warning: Suspicious pointer conversion. This occurs because caller

~ fun() returns a pointer to a const character which is being assigned to

a pointer to a non-const.

i A 1611
‘.- No
A 1612

- fun()returns a pointer to a const character which cannot be modified.

A 1613

- 188 Test Your C Skills

A program s ‘const correct’ if it never changes (amore common term
is mutates) a constant object.

A 1614
B
A 1615

C

A 1616

Warning: Suspicious pointer conversion. k can be pointed to only by -

a pointer to a const; gis a const‘pointer.
A 1617

There is no difference.

A 1618

There is no difference.

A 1619

Since fun() would be called by value there is no need to declare n as
a const since passing by value already prevents fun() from modifying
n.

Chapter 17

Memory Allocation

. Q 171

What would be the output of the following program?

main()

{
char*s;
char * fun() ;

s=fun();
printf ("%s", s) ;
}

char * fun()

{
char buffer[30] ;

strepy (buffer, "RAM - Rarely Adequate Memory") ;
return (buffer) ;

}

Q 172

What is the solution for the problem in program 17.1 above?

190) Test Your C Skills

Q 173

Does there exist any other solution for the problem in 17.1?

Q 174

How would you dynamically allocate a 1-D array of integers?

Q 175

How would you dynamically allocate a 2-D array of integers?

Q 176

How would you dynamically allocate a 2-D array of int(?gers surfh
that we are able to access any element using 2 subscripts, as in

arr[i][j]?

Q 177

How would you dynamically allocate a 2-D array of integers sugh
~ that we are able to access any element using 2 subscripts, as in
arr[i][j]? Also the rows of the array should be stored in adjacent
memory locations.

Q 178

How many bytes would be allocated by the following code?

#include "alloc.h"
#define MAXROW 3

Chapter 17: Memory Al!ocarion 191

#define MAXCOL 4
main()
{
int (*p)[MAXCOL] ; _
p=(int(*)[MAXCOL]) malloc (MAXROW * sizeof (0));
}

Q 179

What would be the output of the following program?

#include "alloc.h"
#define MAXROW 3
#define MAXCOL 4
main()

int (*p JIMAXCOL];
p=(int(*)[MAXCOL]) malloc (MAXROW * sizeof (*p)) ;
printf ("%d %d", sizeof (p), sizeof (*p));

}

Q 17.10

In the following code p is a pointer to an array of MAXCOL elements.
Also, malloc() allocates memory for MAXROW such arrays. Would
these arrays be stored in adjacent locations? How would you access
the elements of these arrays using p?

#define MAXROW 3
#define MAXCOL 4
main()
{

inti,;

int (*p)IMAXCOL];

192 Test Your C Skills

p = (int (*)[MAXCOL]) malloc (MAXROW * sizeof (*p)) :

Q 1711

How many bytes would be allocated by the following code?

#include "alloc.h"

#define MAXROW 3

#define MAXCOL 4

main()

{
int (*p)[IMAXCOL][MAXROW]
p=(int(*)[MAXROW]MAXCOL]) malloc (sizeof (*p));

}
Q 1712

How would you dynamically allocate a 3-D array of integers?

Q 1713

How many bytes of memory would the following code reserve?

#include "alloc.h"
main()
{
int*p;
p=(int*)malloc (256 * 256) ;
printf (*Allocation failed") ;

Chapter 17: Memory Allocation - : 193

Q 1714

How would you free the memory allocated by the following program?

#include “alloc.h”
#define MAXROW 3
#define MAXCOL 4
main()

{

int **p,i;

p = (int**) malloc (MAXROW * sizeof (int*));
for (i=0;i<MAXROW ; i++)
pli] = (int*) malloc (MAXCOL * sizeof (int)) ;
}

Q 1715

How would you free the memory allocated by the following program?

#include "alloc.h"
#define MAXROW 3
#define MAXCOL 4
main()

{

int *p, i,];

p = (int**) malloc (MAXROW * sizeof (int*));
p[0] = (int *) malloc (MAXROW * MAXCOL * sizeof (int)) ;

for(i=0;i<MAXROW; i++)
plil = p{0] + i * MAXCOL ;

194 Test Your C Skills

QR 1716

Would the following code work at all times?

main()

{
char *ptr ;
gets (ptr);

printf (“%s", ptr) ;
}

Q 1717

The following code is improper though it may work some times. How
would you improve it?

main()

{
char *s1 = "Cyber";
char *s2 = "Punk" ;
strcat (1,82) ;
printf ("%s", s1);

}

Q 1718

What would be the output of the second printf{) in the following
program?

#include "alloc.h"

main()

{
int*p ;
p=(int*)malloc(20);

Chapter 17: Memory Allocation 195

printt (*%u", p) ; /* suppose this prints 1314 */
free (p);
printf ("%u’, p) ;

}

Q 1719

Something is logically wrong with this program. Can you pointit out?

#i.nclude "alloc.h”

main()
{
struct ex
{
inti;
float j;
char’s;
¥
struct ex *p ;

p = (struct ex *) malloc (sizeof (structex));
p->s = (char*) malloc (20) ;
free (p);

}

Q 1720

To free() we only pass the pointer to the block of memory which we
want to deallocate. Then how does free() know how many bytes it
should deallocate?

Q 1721

What would be the output of the following program?

196 Test Your C Skills

#include "alloc.h"

main()

{ .
int*p;
p=(int*)malloc(20);
printf ("%d", sizeof (p)) ;
free (p);

}

QR 1722

Can I increase the size of a statically allocated array? <Yes/\'
yes, how?

Q 1723

Can Lincrease the size of a dynamically allocated array? <Yes/No>
If yes, how?

Q 1724

Suppose we ask realloc() to increase the allocated space for a
20-integer array to a 40-integer array. Would it increase the array
space at the same location at which the array is present or would it
try to find a different place for the bigger array?

QR 1735

When reallocating memory if any other pointers point into the same
piece of memory do we have to readjust these other pointers or do
they get readjusted automatically?

Chapter 17: Memory Allocation ' 197

Q 1726

What's the difference between malloc() and calloc() functions?

Q 1727

Which function should be used to free the memory allocated by
calloc()?

Q 1728

malloc() allocates memory from the heap and not from the stack.
<True/False>

Q 1729

How much maximum memory can we allocate in a single call to
malloc()?

QR 1730

What if we are to allocate 100 KB of memory?

Q 1731

Can we dynamically allocate arrays in expanded memory?

Q 1732

Point out the error, if any, in the following code.

198 Test Your C Skills Chapter 17: Memory Allocation 199
?’ai"() A 173
char *ptr; #include "alloc.h”
ptr=(char) malloc (30); main()
strepy (ptr, "RAM - Rarely Adequate Memory") ; {
printf ("\n%s", ptr) ; ~ char’s;
free (ptr) ; char*fun() ;
}
s=fun();
printf ("%s", s) ;
Answers free (s);
}
A 171
char * fun()
The output is unpredictable since buffer is an auto array and would . { char *ptr :
die when the _c'ontrol goes baclf to main(). Thus s would be pointing pir = (char *) malloc (30) ;
to an array which no longer exists. strepy (ptr, "RAM - Rarely Adequate Memory") ;
return (ptr);
AT 7.2 }
main()
{ A 174
EE:: f}dn(): #include "alloc.h"
: #define MAX 10
s=fun(); '{'“a'"{)
; printf ("%s", s) ; i
p=(int*) malloc (MAX * sizeof (int)) ;
char * fun() for (i=0;i<MAX;i++)
{ { i
; plii=1;
static char buffer{30] ; Mo Ry
strepy (buffer, "RAM - Rarely Adequate Memory") ; } printf { "\n%d", pii)
return (buffer) ; |
} :

200 Test Your C Skills

A5

#include "alloc.h"
#define MAXROW 3
#define MAXCOL 4
main()
{
int*p, i,j;
p=(int*) malloc (MAXROW * MAXCOL * sizeof (int)) ;
for (i=0;i< MAXROW ;i++)
{
for(j=0;j<MAXCOL; j++)
{
pli*MAXCOL+j]=i;
printf ("%d *, p[i* MAXCOL +j]);
}
printf ("\n") ;
}
}

A 176

#include "alloc.h"
#define MAXROW 3
#define MAXCOL 4
main()

{

int **p, i, j;

p=(int*) malloc (MAXROW * sizeof (int*));
for (i=0;i<MAXROW; i++)
pli] = (int*) malioc (MAXCOL * sizeof (int)) ;

for (1=0; i< MAXROW; i++)

{
for (j=0;j<MAXCOL; j++)
{ ,

| Chapter 17: Memory Aliocation 201

Pl =1;
printf (*%d °, pliJlil) ;
}
printf ("\n") ;
}
}

A 177

#include "alloc.h"
#define MAXROW 3
#define MAXCOL 4
main()

{

int **p, i, |;

p=(int**) malloc (MAXROW * sizeof (int*));
p[0] = (int *) malloc (MAXROW * MAXCOL * sizeof (int)) ;

for(i=0;i<MAXROW; i++)
pli] = p[0] + i * MAXCOL ;

for (i=0;i<MAXROW;i++)
{
for (j=0;j<MAXCOL; j++)

plill] =1;
printf (*%d *, plilil) ;

}
printf ("\n") ;

_,'V- A 17.8

14 bytes

202 g l Test Your C Skills

A lizo
28

A 110

The arrays are stored in adjacent locations. You can confirm this by
printing their addresses using the following loop.

inti;
for (i=0;i<MAXROW ; i++)
printf (*%d ", pli]) ;

To access the array elements we can use the following set of loops.

for (i=0 i< MAXROW : i++)
{ _
for (j=0;j<MAXCOL; j++)
printf ("%d ", p{ll]) ;
}

A 1711
14 bytes

A 1712

#include "alloc.h"
#define MAXX 3
#define MAXY 4
#define MAXZ 5
main()
{

int **p, i, J, k;

Chapter 17: Memory Allocation 203

p = (int***) malloc (MAXX * sizeof (int**)) ;
for (i=0;i<MAXX;i++)

{
pli] = (iint **) malloc (MAXY * sizeof (int*));
for(j=0;j<MAXY;j++)
plilli] = (int*) malloc (MAXZ * sizeof (int)) ;
}
for (k=0; k< MAXZ ; k++)
{
for (i=0;i<MAXX;i++)
{
for (j=0;j<MAXY;j++)
{
POIGIK] =i +j+k;
} printf (*%d *, pliJflikl) ;
printf ("\n") ;
} e
printf ("\n\n") ;
}
&
FA 1713

It would fail to allocate any memory because 256 * 256 is 65536
- which when passed to malloc() would become a negative number
since the formal argument of malloc(), an unsigned int, can accom-
modate numbers only upto 65535. :

LA 1714

~ for(i=0;i<MAXROW ;i++)
free (pli]) ;

204 Test Your C Skills

free (p);

A s

free (p[0]) ;
free(p);

A 1716

No. Since ptr is an uninitialised pointer it must be pointing at some
unknown location in memory. The string that we type in would get
stored at the location to which ptr is pointing thereby overwriting
whatever is present at that location.

A 1717

main()

{
char s1[25] = "Cyber" ;
char *s2 = "Punk" ;
strcat (s1,82) ;
printf ("%s", s1);

}

A 1718
1314
A 1719

The memory chunk at which s is pointing has not be-en freed. Just
freeing the memory pointed to by the struct pointer p is not enough.
Ideally we should have used:

Chapter 17: Memory Allocation

free (p->s);
free(p);

In short when we allocate structures containing pointers to other
dynamically allocated objects before freeing the structure we have to
first free each pointer in the structure.

A 1720

In most implementations of malloc() the number of bytes allocated
is stored adjacent to the allocated block. Hence it is simple for free()
to know how many bytes to deallocate.

A 1721

2

P A 1720

No

A 1723

Yes, using the realloc() function as shown below:

#include "alloc.h"

main()

{
int*p;
p=(int*)malloc (20);
t=p;

t=(int*)realloc (p, 40);
if (== NULL

206 Test Your C Skills

printf ("Cannot reallocate, leaves previous allocated region unchanged") ;

else
{
if(p==t)
; /* the array expanded at the same region */
else
{
free (p) ; /* deallocate the original array */
p=t; /* set p to newly allocated region */
}
}
}
A 1724

Both. If the first strategy fails then it adopts the second. If the firstis .

succesful it returns the same pointer that you passed to it otherwise
- a different pointer for the newly allocated space.

A 17.25

If realloc() expands allocated memory at the same place then there
is no need of readjustment of other pointers. However, if it allocates
a new region somewhere else the programmer has to readjust the
other pointers.

A 179

As against malloc(), calloc() needs two arguments, the number of
elements to be allocated and the size of each element. For example,

p=(int*) calloc (10, sizeof (int));

Chapter 17: Memory Allocation 207

would allocate space for a 10-integer array. Additionally, calloc()
would also set each of this element with a value 0.

Thus the above call to calloc() is equivalent to:

p=(int*)malloc (10 * sizeof (int)) ;
memset (p, 0, 10 * sizeof (int)) ;

A 1727
The same that we use with malloc(), i.e. free().

A 17298

True
A 1799
64 KB

A 173

Use the standard library functions farmalloc() and farfree(). These
functions are specific to DOS.

A 1731

Yes. Using interrupt 0x67, the details of which are beyond the sCope
of this book.

208 ' Test Your C Skills

A 1732

While assigning the address returned by malloc() we should use ptr
and not *ptr.

) Chapter 18

Variable Number of Arguments

L Q s

Which header file should you include if you are to develop a function
which can accept variable number of arguments?

A. vararg.h
B. stdlib.h
C. stdio.h
D. stdarg.h
Q 152

What would be the output of the following program?

#include <stdio.h>
#include <stdarg.h>
main()

{

fun ("Nothing specific’, 1,4,7,11,0) ;
})

fun (char *msg, ...)

{
inttot=0;
va_list ptr;

210 : Test Your C Skills

int num ;

va_start (ptr, msg) ;

num = va_arg (ptr, int) ;

num = va_arg (ptr, int) ;

printf ("\n%d", num);
}

Q 183

Is it necessary that in a function which accepts variable argument list
there should at least be one fixed argument? <Yes/No>

Q 1s4

Can the fixed arguments passed to the function which accepts vari- '

able argument list occur at the end? <Yes/No>

Q 185

Point out the error, if any, in the following program.

#include <stdarg.h>
main()

{
}

varfun (3,7,-11,0);

varfun (intn, ...)

{
va_list ptr ;
int num ;

num = va_arg (ptr, int) ;

Chapter 18: Variable Number of Arguments

211

}

Q

Point out the error, if any, in the following program.

printf ("\n%d", num) ;

18.6

#include <stdarg.h>
main()

{
}

varfun (3,7.5,-11.2,0.66) ;

varfun (intn, ...)

{

)

Q

Point out the error, if any, in the following program.

float *ptr ;
int num ;
va_start (ptr,n);

num = va_arg (ptr, int) ;
printf ("\n%d", num) ;

18.7

#include <stdarg.h>
main()

{
}

fun (...

{

fun (1,4,7,11,0);

)

212 Test Your C Skills

| va_list ptr ;
int num ;

va_start (ptr, int) ;
num = va_arg (ptr, int) ;

printf ("%d", num) ;
}

Q 15

The macro va_start is used to initialise a pointer to the beginning of
the list of fixed arguments. <True/False>

Q 159

The macro va_arg is used to extract an argument from the variable
argument list and advance the pointer to the next argument.
<True/False> :

Q 1510

Point out the error, if any, in the following program.

#include "stdarg.h"
main()

{
}

display (4,’A",’a, 0", ’c¢’) ;

display { int num, ...)
{
charc;intj;
va_list ptr ;

Chapter 18: Variable Number of Arguments 213

va_start (ptr, num) ;
for(j=1;j<=num;j++)
{ .
c=va_arg (ptr, char);
printf ("%c *, ¢) ;

}

Q 11811

Mention any variable argument list funciton that you have used and

its prototype.

Q 1812

Point out the error, if any, in the following program.

#include "stdarg.h"'
main()

{
}

display (int num, ...)

{

display (4, 125, 135, 14.5, 443) :

float c; intj;
va_list ptr ;

va_start (ptr, num) ;

for(j=1;j<=num;j++)
{
¢ =va_arg (ptr, float) ;
printf ("\n%f*, ¢) ;

214 Test Your C Skills

}

Q 1813

Point out the error in the following program.

#include "stdarg.h"
main()

{
}

display ("Hello", 4, 2,12.5, 13,5, 14.5,44.0) ;

display (char *s, int num1, int num2, ...)
: _
floatc;intj;
va_list ptr;

va_start (ptr, s) ;
¢ =va_arg (ptr, double) ;
printf ("\n%f ", ¢) ;

}

Q 1514

Can we pass a variable argument list to a function at run-time?
<Yes/No>

QR 1815

While defining a variable argument list function can we drop the
ellipsis. (...) <Yes/No>

Chapter 18: Variable Number of Arguments 215

Q 1816

Can we write a function that takes a variable argument list and passes
the list to another function (which takes a variable number of argu-
ments) <Yes/No>

Q 1517

Point out the error, if any, in the following program.

#include "stdarg.h"

main()
{
display ("Hello", 4, 12, 13, 14,44),
}
display (char*s, ...)
{
show (s, ...);
}
show (char*t, ...)
{
va_list ptr;
inta;
va_start (pir, t);
a=va_arg(ptr,int);
printf ("%f*,a) ;
}

Q 1s1s

How would you rewrite program 18.17 such that show() is able to
handle variable argument list?

216 Test Your C Sk_ills

Chapter 18: Variable Number of Arguments

p'l =funi ;
p2 =fun2;
display ("Bye", p1,p2) ;

Q 1519

If I use the following pringf{) to print a long int why I am not warned
about the type mismatch?

}

display (char*s, ...)

printf (*%d", num) ; (
int (*pp1)();
Q 1820 va_ist ptr;
va_start :
Can you write a function that works similar to printf{)? pp? e va(g:; ? ;l{r it (*)())
(*pp1)();
Q 1821 pp2 = va_arg (ptr,int (*)()) ;
(*pp2)() ;
How can a called function determine the number of arguments that)
have been passed to it? funi()
{
Q 18.22 printf ("Hello") ;
Can there be at least some solution to determine the number of fun2()
arguments passed to a variable argument list function? {
printf ("Hi") ;
Q 1823)

Q 1824

How would you rectify the error in the program 18.23 above?

Point out the error in the following program.

#include "stdarg.h*
main()

{

int(*p1)();
m‘(P2)N);
int fun1(), fun2() ;

Chapter 18: Variable Number of Arguments 219

218 Test Your C Skills

A 187

Answers

A8

There is no fixed argument in the definition of fun().

A 188

D
A 182

4

A 183

True

A 1810

Yes

A 184

While extracting a char argument using va_arg we should have used
¢ = va_arg (ptr, int).

A 1811

printf (const char *format, ...) ;

A 1812

No
A 185

Since ptr has not been set at the beginning of the variable argument
list using va_start it may be pointing anywhere and hence a call to
va_arg would fetch a wrong integer.

A 186

While extracting a float argument using va_arg we should have used
¢ = va_arg (ptr, double).

A 1813

Irrespective of the type of argument passed to a function receiving

i ' t list, pt t be of the type va_list. ; i o) :
manie st G PR YR While setting the ptr to the beginning of variable argument list we

should have used va_start (ptr, num2).

220 ' Test Your C Skills

A 1814

No. Every actual argument list must be completely known at compile
time. In that sense it is not truely a variable argument list.

A 1815

Yes

A isie
Yes

A 1817

The call to show() is improper. This is not the way to pass variable
argument list to a function.

A 1818

#include "stdarg.h"
main()

{
}

display ("Hello", 4, 12, 13, 14,44) ;

display (char*s, ...)

{
va_list ptr;
va_start (ptr,s);
show (s, ptr) ;

Chapter 18: Variable Number of Arguments 221

show (char *t, va_list ptr1)

{
inta,n,i;
a=va_arg (ptrt,int);
for(i=0;i<a;i++)
{
n=va_arg (ptri,int);
printf ("\n%d", n) ;
}
}

A 1819

When a function accepts a variable number of arguments, its
prototype cannot provide any information about the number of argu-
ments and type of those variable arguments. Hence the compiler
cannot warn about the mismatches. The prorgammer must make sure
that arguments match or must manually insert explicit typecasts.

A 1820

#include <stdio.h>
#include <stdarg.h>

main()
{
void myprintf (char *, ...) ;
char * convert (unsigned int, int) ;
inti=65;
char str[] = "Intranets are here to stay..” ;
myprintf ("\nMessage = %s %d %x", str, i, i) ;
}

void myprintf (char *fmt, ...)
{

char*p;

Test Your C Skills

inti;
unsigned u ;
char*s;
va_list argp ;

va_start (argp, fmt) ;

p= fmt ;
for (p=fmt;*p!="0'; p++)
{
if(*pl="%)
{
putchar (*p);
continue ;
}
p++;
switch (*p)
{
case'c’: ‘
i =va_arg(argp,int);
putchar(i) ;
break ;
case'd:
‘i=va_arg(argp,int);
if(i<0)
{
=5
putchar (') ;
}
puts (convert (i,10));
break ;
case’o’:

u=va_arg (argp, unsignedint) ;

puts (convert (u,8));
break ;

Chapter 18: Variable Number of Arguments ; 223

case’s':
s =va_arg (argp, char*);
puts (s);
break ;
case 'u': '
u=va_arg (argp, unsigned int) ;
puts (convert (u, 10)) ;
break ;
case X :
u =va_arg (argp, unsigned int) ;
puts (convert (u, 16)) ;
break ;
case’'%’:
putchar (%’) ;
break ;
}
}
va_end (argp);
}
char * convert (unsigned int num, int base)
{
static char buff[33] ;
char *ptr;
ptr = &buff [sizeof (buff) - 1];
*ptr="0';
do
{
*.-ptr = "0123456789abcdef'[num % base] ;
num /= base ;
} while (num!=0);
return ptr;
}

224 Test Your C Skills

A 1821

It cannot. Any function that takes a variable number of arguments
must be able to determine from the arguments themselves how many
of them there are. The printf() function, for example, does this by
looking for format specifiers (%d etc.) in the format string. This is
the reason why such functions fail badly if the format string does not
match the argument list. '

A 1822

When the arguments passed are all of same type we can think of
passing a sentinel value like -1 or 0 or a NULL pointer at the end of
the variable argument list. Another way could be to explicitly pass
the count of number of variable arguments.

A 1823

va_arg cannot extract the function pointer from the variable argu-
ment list in the manner tried here.

A 1824

Use typedef as shown below:

#include "stdarg.h"
main()
{

int (*p1)();

int (*p2)() ;

int fun1(), fun2() ;

p1=funi;

Chapter 18: Variable Number of Arguments

p2 =fun2;
display ("Bye", p1,p2);
}

display (char*s, ...)

{
int (*pp1)(), ("pP2)();
va_list ptr;
typedef int (*funcptr)() ;
va_start (ptr,s) ;
pp1 =va_arg (ptr, funcptr) ;
(*pp1)();
pp2 = va_arg (ptr, funcptr) ;
(*pp2)();

}
funi()
{
printf ("\nHello") ;
}
fun2()
{

printf ("\nHi") ;
}

Chapter 19

Complicated Declarations

Q 191

What do the following declarations signify?

int *f() ;

int (*pf)();

char **argv ;

void (*f[10]) (int, int) ;

char far *scr ;

char far *arr[10] ;

int (*a[5])(int far *p) ;

char far *scrl, *scr2 ;

int (*ftable[])(void) = { fadd, fsub, fmul, fdiv } ;
int (*ptr)[30] ;

int *ptr[30] ;

void *cmp() ;

void (*emp)() ;

char (* (*£())[1) ()

char (* (*x[3])())I[5];

void (*f)(int, void (*)()) ;

TG EE G et mr e F)t N TR)
void (*f)(void (*)(int *, void **), int (*)(void **, int *)) ;
char far * far *ptr ;

char far * near *ptr ;

char far * huge *ptr ;

CHPPONOZENA-FZOMEUNW

228 Test Your C Skills

Q 192

What would be the output of the following program?

main()
{
char near * near *ptr ;
char near * far *ptr2 ;
char near * huge *ptr3 ;
printf ("%d %d %d", sizeof (ptr1), sizeof (ptr2), sizeof (ptr3)) ;

}

QR 193

What would be the output of the following program?

main()
{
char far * near *ptr1 ;
charfar * far *ptr2 ;
char far * huge *ptr3 ;
printf (“%d %d %d", sizeof (ptr1), sizeof (ptr2), sizeof (ptr3)) ;

}

Q 194

What would be the output of the following program?

main()
{
char huge * near *ptr1 ;
char huge * far *ptr2;
char huge * huge *ptr3 ;
printf ("%d %d %d", sizeof (ptr1), sizeof (ptr2), sizeof (ptr3)) :

Chapter 19: Complicated Declarations

}

QR 195

What would be the output of the following program?

main()

{

}

char huge * near * far *ptr1 :
char near * far * huge *ptr2 ;
charfar * huge * near *ptr3 ;
printf ("%d %d %d", sizeof (ptr1), sizeof (ptr2), sizeof (ptr3))

QR 196

What would be the output of the following program?

main()

{

}

char huge * near * far *ptr1 ;
char near * far * huge *ptr2 ;
char far * huge * near *ptr3 ;
printt (“%d %d %d", sizeof (ptr1), sizeof (*ptr2), sizeof (**ptr3))

QR 197

What would be the output of the following program?

main()

{

char huge * near * far *ptr1 ;
char near * far * huge *ptr2 ;

230 Test Your C Skills -

Chapter 19: Complicated Declarations

char far * huge * near *ptr3 ; [3
printf ("%d %d %d", sizeof (*ptr1), sizeof (**ptr2), sizeof (ptr3)) ; I 3 Q 1911

}

] Can you write a program which would implement the following
Q 19.8 I 3 declaration.

void (*f)(int, void (*)()) ;
What would be the output of the following program?

main() . Answers:
{ | §

char huge * near * far *ptr1 ; i A 1914

char near * far * huge *ptr2 ; '

char far * huge * near *ptr3 ; __ | . | , 4
printf ("%d % %d", sizeof (**ptrt), sizeof (ptr2), sizeof (*ptrd)) ; ' fis a function returning pointer to an int.

}

Q 199

Are the following two declarations same? <Yes/No>

A 19iB

pfis a pointer to function which returns an int.

A nic
char far * far *scr ;

char far far ** scr; : ; 3
argy is a pointer to a char pointer.

Q 19.10 B A

19.1:D.

How would you declare the following: . ; _ _ :
fis an array of 10 function pointers, where each function receives two

- An array of three pointers to chars. , ints and returns nothing.
- An array of three char pointers. _
- A pointer to an array of three charg : . ‘ | A 191E
- A pointer to a function which receives an inf pointer and returns
a float pointer. : : _ : ‘ : : ;
- A pointer to a function which recevies nothing and returns ' scris a far pointer to a char. (far pointer is a pointer which contains

nothing. : an address which lies outside the data segment).

232 Test Your C Skills

A 191F
arr is an array of 10 far character pointers.

A maie

a is an array of 5 function pointers. Each of these functions receive
a far pointer to an int and returns an int.

A w1m
scrl is a far pointer to a char, whereas scr2 is a near pointer to a char.

A 1911

ftable is an array of 4 function pointers which point to the functions
fadd(), fsub() etc. Each of these functions accept nothing and return

an int.

A 1914

ptr is a pointer to an array of 30 integers.
A 1k

ptris an array of 30 pointers to integers.
A 191L

cmp is a function returning pointer to void.

Chapter 19: Complicated Declarations 233

A 191Mm

cmp is a pointer to function which returns a void.

A 191N

f 1s a function returning pointer to array[] of pointer to function
returning char.

A 110

x is an array of 3 pointers to functions returning pointer to an array
of 5 chars.

A nip

f1s a pointer to a function which returns nothing and receives as its
parameter an integer and a pointer to a function which receives
nothing and returns nothing,

A 910

/s a pointer to a function which returns a pointer to an int pointer
and receives two arguments: a pointer to an inz pointer and a function
pointer which points to a function which receives two pointers to int
pointers and returns a pointer to an int pointer.

A “vorn

f is a pointer to a function which returns nothing and receives two
arguments, both function pointers: the first function pointer points to

Test Your C Skills Chapter 19: Complicated Declarations

234

a function which returns nothing but receives two arguments - an int
pointer and a pointer to a void pointer; the second function pointer
points to a function whichreturns an int pointer and receives a pointer

to a void pointer and an inf pointer.

A 1918

ptr is a far pointer to a far pointer to a char, or in easier words, ptr
contains a far address of a far pointer to a char.

A mir

ptr is a near pointer to a far pointer to a char, or in easier words, ptr
contains a near address of a far pointer to a char.

A 10uU

ptris a huge pointer to a far pointer to 2 char, or in easier words, ptr
contains a huge address of a far pointer to a char.

No
A 192
A 1910
244
char *ptr[3] ;
char *ptr(3] ;
Vi char (*ptr)[3] ;
ﬂogt*(*ptr)(int*);
. void (*ptr)() ;
i A 1911
main()

244 {

236

Test Your C Skills

void (*f)(int, void (*)()) ;

void fun (int, void (*)());
il | ~ Chapter 20
void (*p)(); - | - :
f=tun; Library Functions
p=tuni ; "
(*f)(23,p);

}

- void fun (inti, void (*q)())

printf ("Hello") ; : Q 20.1

) I

\{rmd) What do the functions atoi(), itoa() and geve() do? Show how would
: you use them in a program.

}

QR 202

Does there exist any other function which can be used to convert an
integer or a float to a string? If yes, show how you would use it.

QR 203

How would you use gsort() function to sort an array of structures?

Q 204

How would you use gsort() function to sort the names stored in an
array of pointers to strings?

238 Test Your C Skills

Q 205

How would you use bsearch() function to search a name stored in an
array of pointers to strings?

Q 206

How would you use the functions sin(), pow(), sqri()?

Q 207

How would you use the function memepy()?

Q 208

How would you use the function memset()?

Q 209

How would you use the function memmove()?

Q 2010

How would you use the functions fseek(), fread(), fwrite() and ftell()?

Q 2011

How would you obtain the current time and difference between two
times?

|

Chapter 20: Library Functions 239

QR 2012

How would you use the function randomize() and random()?

QR 2013

Would the following program always output ‘Banglore’?

main()

{

char str1[] = "Banglore - 440010";
charstr2[10] ;

strncpy (str2, str1, 8) ;
printf ("\n%s", str2) ;
}

Q 2014

Can you shorten this code?

main()

{
char str1[] = "Banglore - 440010";
char str2[10] ;

str2[0]=\0’;
strncat (str2, str1,8);
printf ("%s", str2) ;

240 Test Your C Skills

Q 2015

How would you implement a substr() function that extracts a substr-
ing from a given string?

Q 2016

Given a sentence containing words separated by spaces how would
you construct an array of pointers to strings containing addresses of
each word in the sentence?

Q 20.17

Write the comparison function gs_compare() for the following code.

struct date

{
1

gs_compare (const void *, const void *) ;

intd, m,y;

main()
{
struct date dd[] = {

{17, 11,62},
(24,8, 78},
{17,11,62},
{16, 12,76},
{19, 2,94}

inti, w:
clrser() ;

Chapter 20: Library Functions 241

w = sizeof (struct date) ;
gsort (dd, 5, w, gs_compare) ;

for(i=0;i<4;i++)
printf ("\n%d %d %d", dd[i].d, dd[il.m, dd[i.y) ;
))

QR 2018

How should we sort a linked list?

Q 2019

What's the differnce between the functions rand(), random(), srand()
and randomize()?

Q 2020

What's the difference between the function memmove() and
memepy()?

Q 2021

/
How would you print a string on the printer?

Q 2022

Can you use the function fprintf{() to display the output on the screen?

242 Test Your C.Skills Chapter 20: Library Functions N B

Answers floath =3.14;
char str[40] ;
A 201 ,
sprintf (str, "a=%db=%f",a,b);
atoi() Converts a string to an integer. puts (str) ;
itoa() Converts an integer to a string.)

gevt() Converts a floating-point number to a string.

A 203

#include "stdlib.h" #include "string.h"

main() #include "stdlib.h"
{
chars[] = "12345"; struct stud
char buffer[15], string[20] ; {
inti; int rollno ;
int marks ;
i=atoi(s); char name[30] ;

printf ("\n%d", i) ; 5
int sort_rn (struct stud *, struct stud *) ;
int sort_name (struct stud *, struct stud *) ;

int sort_marks (struct stud *, struct stud *) ;

gevt (20.141672, 4, buffer) ;
printf ("\n%s", buffer) ;

itoa (15, string, 2) ;

printf ("\n%s", string) ;
}

A 202

main()
{
static struct stud ss[] = {
{15, 96, "Akshay" },
{2,97, "Madhuri" },
{8, 85, "Aishvarya" },
{10, 80, "Sushmita" }

The function sprintf{) can be used for this purpose. This function also }:
has the ability to format the numbers as they are converted to strings. intx, w:
The following program shows how to use this function.
clrser() ;
#include "stdio.h" w = sizeof (struct stud) ;
main() '
{ printf ("\nin order of roll numbers: ") ;
inta=25; gsort (ss, 4, w,sort_rn) ;

244 Test Your C Skills

for(x=0;x<4;x++)
printf ("\n%d %s %d", ss[x].rolno, ss[x].name, ss[x].marks) ;

printf ("\n\nin order of names: *) ;
gsort (ss, 4, w, sort_name) ;

for(x=0;x<4;x++)

printf ("\n%d %s %d", ss[x].rollno, ss[x].name, ss[x].marks) ;
printf ("\n\nin order of marks: ") ;
gsort (ss, 4, w, sort_marks) ;

for(x=0;x<4;x++)
printf ("\n%d %s %d", ss[x].rolino, ss{x].name, ss{x].marks) ;

J

int sort_rn (struct stud *t1, struct stud *2)

| retumn (t1->rollno - t2->rolino) ;

}

int sort_name (struct stud *t1, struct stud *t2)
{ return (stremp (t1->name, t2->name)) ;
)

int sort_marks (struct stud *t1, struct stud *t2)
{ return (t2->marks - t1->marks) ;

}

A 204

#include "string.h"
#include "stdlib.h"

int sort_name (const void *, const void *) ;

Chapter 20: Library Functions

main()
{
char *names[] = {

"Akshay",
‘Madhuri’,
"Aishvarya’,
"Sushmita’,
‘Sudeepta”

inti:

gsort (names, 5, sizeof (char *), sort_name) ;
for(i=0;i<5;i++)
printf ("\n%s", names|i]) ;

}
int sort_name (const void *t1, const void "2)
{
/* t1 and 2 are always pointers to objects being compared */
char **t11, **22 ;
/* cast appropriately */
t11 = (char*™)1,
t22 = (char **)12 ;
return (stremp (*t11,*t22)) ;
}

A 205

#include "string.h"
#include "stdlib.h"

int sort_name (const void *, const void *) ;
int bs_compare (char **, char **) ;
main()

246 Test Your C Skills

Ay

char *names[| = {

" - "Akshay",
"Madhuri",
"Aishvarya’,
"Sushmita’,
"Sudeepta’

int i, wide, nel ;
char *s = "aMadhuri’, **b ;

gsort (names, 5, sizeof (char *), sort_name) ;
clrser() ;
for(i=0;i<5;i++)

printf ("\n%s", namesi]) ;

wide = sizeof (names[0]) ;
nel = sizeof (names)/ wide ;
b = bsearch (&s, names, nel, wide, bs_compare) ;

if (b==NULL)

printf ("Not found") ;
else

printf ("\n\n%s", *b) ;

}

int sort_name (const void *t1, const void *t2)

{

/*t1 and t2 are always pointers to objects being compared */
char **t11, *t22 ;
I* cast appropriately */

t11 = (char*) t1;
122= (ichar™)i12;

Chapter 20: Library Functions 247

retumn (stremp (*t11, *122)) ;
}

int bs_compare (char **s1, char **s2)

{

return (stremp (*s1,%s2)) ;

1
A 206

#include "math.h’
main()
{
intang;
float angrad, x, y, a, b ;

printf ("\nEnter the angle in degrees”) ;
scanf ("%d", &ang) ;

angrad =ang * 3.14 /180 ;
x =sin (angrad);
a=pow(x,2);
b=1-a;

y=sqrt(b);

printf ("\ncosine of angle %d is = %f", ang, y) ;

1
A 207

#include "mem.h’
#include "alloc.h"

main()
{
int area ; A
char src[] = "Pray, not for lighter load, but for stronger back";

248 Test Your C Skills

char *dest ;

area = sizeof (src) ;
dest = malloc (area) ;
memepy (dest, src, area) ;

printf (“\n%s", src) ;
printf ("\n%s", dest) ;
)

A 208

#include "mem.h"
main()
{
int area;
char src[] = "Bon jour, Madam" ;

area = sizeof (src) ;
memset (src, T, area-7) ;

printf ("\n%s", src) ;

}
A 209

#include "mem.h"
#include "alloc.h"

main()
{
intarea ;
char *dest ;
char src[] = "Life is the camera and you are the target "
"so keep smiling always" ;

area = sizeof (src) ;

Chapter 20: Library Functions

249

dest = malloc (area) ;
memmove (dest, src, area) ;

printf ("\n%s", dest) ;
printf (“\n%s", src) ;
}
A 20 LU

#include "stdio.h"

struct stud
{
int rollno ;
char name[10] ;
float per ;
le;
FILE *f5;
rmain()
{
long position = OL ;
int rollno;
char ch;
float temp ;

fs = fopen ("stud.dat", "rb+") ;

if (fs == NULL)

{
puts ("Unable to open file") ;
exit(1);

}

do

(

250 Test Your C Skills

printf ("\nEnter code no. to modify: ") ;
scanf ("%d", &rolino) ;

while (fread (&e, sizeof (), 1,fs)==1)

{ :
if (e.rollno == rolino)
{ _
printf ("\nEnter the new record") ;
scanf ("%s %f", e.name, &emp) :
e.per=temp;
fseek (fs, position, SEEK_SET) ;
fwrite (&e, sizeof (e), 1,1s);
break ;
}
: position = ftell (fs) ;
}

puts ("You want to modify records") ;
ch = getche() ;
} while feh=="y)
}

A 2011

#include "time.h"
#include "dos.h"

main()

{
time_tt1,12:
double diff, f ;
inti=2;

time (&t1);
sleep (i);
time (&t2);

Chapter 20: Library Functions 251

diff =difftime (2,11 ;

printf ("\nProgram was active for %lf seconds”, diff)i

} -
A 2012

#include "dos.h"
#include "stdlib.h"

main()

{

randomize() ;

printf ("\nPress any key to stop.") ;
while (!kbhit())
{

sound (random (500)) :
delay (random (100));
nosound() ;

}
}

A 2013

No. Because after copying the source string into the target string
strncpy() doesn’t terminate the target string with a "\0’. A better way
of copying would be:

str2[0] ="\0';
strncat (str2, str1, 8) ;

strncat() always terminates the target string with a "\Q’.

252 Test Your C Skills

A 2014

Yes, using sprintf() as shown below:
/
main()
{
char stri[] = "Banglore - 440010 ;
char str2[10] ;

sprintf (str2, "%."s", 8, str1) ;
printf (“%s", str2) ;
}

A 2015

main()

{
- char stri[] = "Banglore” ;
char str2[5] ;

/* extract 3 characters beginning with first character */
substr (str2, str1, 1,3) ; "
printf ("%s", str2) ;

}

substr (char *t, char *s, int pos, int len)
s :
t0]="0';
strncat (t, s + pos, len) ;
}

A 2016

#include "stdio.h”
#include "string.h"
main()

Chapter 20: Library Functions

253

{
char str[] = "This is a test" ;
char *ptr{101 -
char*p;
inti=1,j;
p = strtok (str, "*) ;
if (p!=NULL)
{
ptrl0]=p;
while (1)
{
p = striok (NULL, " ") ;
if (p==NULL)
break ;
else
{
pti] =p;
i++;
}

for(j=0;j<i;j++)
printf ("\n%s", ptfj]) ;
})

A 2017

int gs_compare (const void *p1, const void *p2)
{

const struct date *sp1 =p1 ;

nonst struct date *sp2 = p2 ;

if (sp1->y < sp2->y)
retun (-1} ;
else if (sp1->y > sp2->y

254 Test Your C Skills

retum(1);

else if (sp1->m < sp2->in)
retum (-1);

elseif (sp1->m > sp2->m)
retun (1);

elseif (sp1->d < sp2->d)
return (-1) ;

else if (sp1->d > sp2->d)
retun (1);

else
return (0);

}

A 2018

Often it’s easier to keep the list in order as we build it rather than
sorting it later. Still if we want to sort the list then we can allocate a
temporary array of pointers, fill it with pointers to the various nodes
in the list, call gsort() and finally rebuild the list pointers based on
the sorted array.

A 2019

rand() returns a random number.

random() returns a random number in a specified range.

srand() initialises a random number generator with a given seed
value.

randomize() initialises a random number generator with a random
value based on time.

A 2020

Both the functions copy a block of bytes from source to destination.
However, if source and destination overlaps the behaviour of

Chapter 20: Library Functions 255

memepy() is undefined whereas memmove() carries out the copying

sorrectly. memcpy() is more efficient, whereas memmove() is safer
to use.

A 2021

#include "stdio.h"
main()

{
char str[] = "There wouldn't have been COBOL without C" :
forintf (stdpmn, "n%s\n", str) ;

}

A 2020

Yes, by replacing the usual file pointer with srdour as shown below:

fprintf (stdout, “%s %d %f", str, i, a)

1

	SCAN.PDF
	SCAN1.PDF
	SCAN2.PDF
	SCAN3.PDF
	SCAN4.PDF

