UNIT-6 Classification and Prediction

Lecture	Topic			

Lecture-32	What is classification? What is prediction?			
Lecture-33	Issues regarding classification and prediction			
Lecture-34	Classification by decision tree induction			
Lecture-35	Bayesian Classification			
Lecture-36	Classification by backpropagation			
Lecture-37	Classification based on concepts			
	from association rule mining			
Lecture-38	Other Classification Methods			
Lecture-39	Prediction			
Lecture-40	Classification accuracy			

Lecture-32 What is classification? What is prediction?

What is Classification & Prediction

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

• Prediction:

- models continuous-valued functions
- predicts unknown or missing values

Applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness analysis

Classification—A Two-Step Process

- Learning step- describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Classification- for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Classification Process: Model Construction

Lecture-32 - What is classification? What is prediction?

Classification Process: Use the Model in Prediction

Lecture-32 - What is classification? What is prediction?

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Lecture-33 Issues regarding classification and prediction

Issues regarding classification and prediction - Preparing the data for classification and prediction

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues regarding classification and prediction Comparing Classification Methods

- Accuracy
- Speed and scalability
 - time to construct the model
 - time to use the model
- Robustness
 - handling noise and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provded by the model
- interpretability
 - decision tree size
 - compactness of classification rules

Lecture-34 Classification by decision tree induction

Classification by Decision Tree Induction

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Training Dataset

This follows an example from Quinlan's ID3

age	income	student	credit_rating
<=30	high	no	fair
<=30	high	no	excellent
3140	high	no	fair
>40	medium	no	fair
>40	low	yes	fair
>40	low	yes	excellent
3140	low	yes	excellent
<=30	medium	no	fair
<=30	low	yes	fair
>40	medium	yes	fair
<=30	medium	yes	excellent
3140	medium	no	excellent
3140	high	yes	fair
>40	medium	no	excellent

Lecture-34 - Classification by decision tree induction

Output: A Decision Tree for "buys_computer"

Lecture-34 - Classification by decision tree induction

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Attribute Selection Measure

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical
 - Can be modified for continuous-valued attributes
- Gini index (IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, P and N
 - Let the set of examples S contain p elements of class P and n
 elements of class N
 - The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

- Assume that using attribute A a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information needed to classify objects in all subtrees S_i is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

 The encoding information that would be gained by branching on A

$$Gain(A) = I(p,n) - E(A)$$

Attribute Selection by Information Gain Computation

- Class P: buys_computer =
 "yes"
- Class N: buys_computer = "no"
- \blacksquare I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

Hence
$$Gain(age) = I(p,n) - E(age)$$

Similarly
$$Gain(income) = 0.029$$
 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Lecture-34 - Classification by decision tree induction

Gini Index (IBM IntelligentMiner)

 If a data set T contains examples from n classes, gini index, gini(T) is defined as

$$gini (T) = 1 - \sum_{i=1}^{n} p_{j}^{2}$$

where p_i is the relative frequency of c^{i} lass j in T.

• If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the *gini* index of the split data contains examples from n classes, the *gini* index gini(T) is defined as

gini _{split}
$$(T) = \frac{N_1}{N} gini (T_1) + \frac{N_2}{N} gini (T_2)$$

• The attribute provides the smallest $gini_{split}(T)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"
IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"
IF age = "31...40" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"
```

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Approaches to Determine the Final Tree Size

- Separate training and testing sets
- Use cross validation, 10-fold cross validation
- Use all the data for training
 - apply a statistical test (chi-square) to estimate whether expanding or pruning a node may improve the entire distribution
- Use minimum description length (MDL) principle:
 - halting growth of the tree when the encoding is minimized

Enhancements to basic decision tree induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods in Data Mining Studies

- SLIQ (EDBT'96 Mehta et al.)
 - builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - separates the scalability aspects from the criteria that determine the quality of the tree
 - builds an AVC-list (attribute, value, class label)

Lecture-35

Bayesian Classification

Bayesian Classification

- Statical classifiers
- Based on Baye's theorem
- Naïve Bayesian classification
- Class conditional independence
- Bayesian belief netwoks

Bayesian Classification

Probabilistic learning

 Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems

Incremental

 Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.

Probabilistic prediction

Predict multiple hypotheses, weighted by their probabilities

Standard

 Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Baye's Theorem

- Let X be a data tuple and H be hypothesis, such that X belongs to a specific class C.
- Posterior probability of a hypothesis h on X, P(h|X) follows the Baye's theorem

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

Naïve Bayes Classifier (I)

A simplified assumption: attributes are conditionally independent:

$$P(C_j|V) = P(C_j) \prod_{i=1}^n P(v_i|C_j)$$

 Greatly reduces the computation cost, only count the class distribution.

Naïve Bayes Classifier

- Let D be a training data set of tuples and associated class labels
- X = (x1, x2, x3,...xn) and M = C1, C2, C3,...Cm
- Bayes theorem:

$$P(Ci|X) = P(X|Ci) \cdot P(Ci) / P(X)$$

 Naïve Baye's predicts that X belongs to class Ci if and only if

$$P(Ci/X) > P(Cj/X)$$
 for $1 <= j <= m$, $i!=j$

Naïve Bayes Classifier

- P(X) is constant for all classes
- P(C1)=P(C2)=....=P(Cn)
- P(X | Ci)·P(Ci) is to be maximize
- P(Ci)=|Ci,d|/|D|

Naïve Bayesian Classification

Naïve assumption: attribute independence

$$P(x_1,...,x_k | C) = P(x_1 | C) \cdot ... \cdot P(x_k | C)$$

- If attribute is categorical:
 P(x_i | C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- If attribute is continuous:
 P(x_i | C) is estimated thru a Gaussian density function
- Computationally easy in both cases

Naive Bayesian Classifier

Given a training set, we can compute the probabilities

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			W indy		
hot	2/9	2/5	true	3/9	3/5
m ild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook		
P(sunny p) = 2/9	P(sunny n) = 3/5	
P(overcast p) = 4/9	P(overcast n) = 0	
P(rain p) = 3/9	P(rain n) = 2/5	
temperature		
P(hot p) = 2/9	P(hot n) = 2/5	
P(mild p) = 4/9	P(mild n) = 2/5	
P(cool p) = 3/9	P(cool n) = 1/5	
humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	P(normal n) = 2/5	
windy		
P(true p) = 3/9	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5	

Lecture-35 - Bayesian Classification

Play-tennis example: classifying X

- An unseen sample X = <rain, hot, high, false>
- P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) =
 3/9·2/9·3/9·6/9·9/14 = 0.010582
- $P(X|n)\cdot P(n) = P(rain|n)\cdot P(hot|n)\cdot P(high|n)\cdot P(false|n)\cdot P(n) = 2/5\cdot2/5\cdot4/5\cdot2/5\cdot5/14 = 0.018286$
- Sample X is classified in class n (don't play)

How effective are Bayesian classifiers?

- makes computation possible
- optimal classifiers when satisfied
- but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time,
 considering most important attributes first

Bayesian Belief Networks (I)

(FH, S) $(FH, \sim S)(\sim FH, S)(\sim FH, \sim S)$

LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

The conditional probability table for the variable LungCancer

Bayesian Belief Networks

Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
- Several cases of learning Bayesian belief networks
 - Given both network structure and all the variables: easy
 - Given network structure but only some variables
 - When the network structure is not known in advance

Lecture-36 Classification by Backpropagation

Classification by Backpropagation

- Neural network learning algorithm
- Psychologists and Neurobiologists
- Neural network set of connected input/output units in which each connection has a weight associated with it.

Neural Networks

Advantages

- prediction accuracy is generally high
- robust, works when training examples contain errors
- output may be discrete, real-valued, or a vector of several discrete or real-valued attributes
- fast evaluation of the learned target function

limitations

- long training time
- difficult to understand the learned function (weights)
- not easy to incorporate domain knowledge

A Neuron

Input weight weighted Activation vector x vector w sum function

 The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

Network Training

- The ultimate objective of training
 - obtain a set of weights that makes almost all the tuples in the training data classified correctly

Steps

- Initialize weights with random values
- Feed the input tuples into the network one by one
- For each unit
 - Compute the net input to the unit as a linear combination of all the inputs to the unit
 - Compute the output value using the activation function
 - Compute the error
 - Update the weights and the bias

Multi-Layer Perceptron

Network Pruning and Rule Extraction

Network pruning

- Fully connected network will be hard to articulate
- N input nodes, h hidden nodes and m output nodes lead to h(m+N) weights
- Pruning: Remove some of the links without affecting classification accuracy of the network

Extracting rules from a trained network

- Discretize activation values; replace individual activation value by the cluster average maintaining the network accuracy
- Enumerate the output from the discretized activation values to find rules between activation value and output
- Find the relationship between the input and activation value
- Combine the above two to have rules relating the output to input

Lecture-37 Classification based on concepts from association rule mining

Association-Based Classification

- Several methods for association-based classification
 - ARCS: Quantitative association mining and clustering of association rules (Lent et al'97)
 - It beats C4.5 in (mainly) scalability and also accuracy
 - Associative classification: (Liu et al'98)
 - It mines high support and high confidence rules in the form of "cond_set => y", where y is a class label

Association-Based Classification

- CAEP (Classification by aggregating emerging patterns) (Dong et al'99)
 - Emerging patterns (EPs): the itemsets whose support increases significantly from one class to another
 - Mine Eps based on minimum support and growth rate

Lecture-38 Other Classification Methods

Other Classification Methods

- k-nearest neighbor classifier
- case-based reasoning
- Genetic algorithm
- Rough set approach
- Fuzzy set approaches

Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- The target function could be discrete- or realvalued.
- For discrete-valued, the k-NN returns the most common value among the k training examples nearest to x_q .
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples.

Discussion on the k-NN Algorithm

- The k-NN algorithm for continuous-valued target functions
 - Calculate the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query point x_q
 - giving greater weight to closer neighbors
 - Similarly, for real-valued target functions
- Curse of dimensionality: distance between neighbors $couldbe^{x}b^{2}$ dominated by irrelevant attributes.
 - To overcome it, axes stretch or elimination of the least relevant attributes.

Case-Based Reasoning

- Also uses: lazy evaluation + analyze similar instances
- Difference: Instances are not "points in a Euclidean space"
- Example: Water faucet problem in CADET (Sycara et al'92)
- Methodology
 - Instances represented by rich symbolic descriptions (function graphs)
 - Multiple retrieved cases may be combined
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving
- Research issues
 - Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases

Lazy vs. Eager Learning

- Instance-based learning: lazy evaluation
- Decision-tree and Bayesian classification: eager evaluation
- Key differences
 - Lazy method may consider query instance xq when deciding how to generalize beyond the training data D
 - Eager method cannot since they have already chosen global approximation when seeing the query
- Efficiency: Lazy less time training but more time predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Genetic Algorithms

- GA: based on an analogy to biological evolution
- Each rule is represented by a string of bits
- An initial population is created consisting of randomly generated rules
 - e.g., IF A₁ and Not A₂ then C₂ can be encoded as 100
- Based on the notion of survival of the fittest, a new population is formed to consists of the fittest rules and their offsprings
- The fitness of a rule is represented by its classification accuracy on a set of training examples
- Offsprings are generated by crossover and mutation

Rough Set Approach

- Rough sets are used to approximately or "roughly" define equivalent classes
- A rough set for a given class C is approximated by two sets: a lower approximation (certain to be in C) and an upper approximation (cannot be described as not belonging to C)
- Finding the minimal subsets (reducts) of attributes (for feature reduction) is NP-hard but a discernibility matrix is used to reduce the computation intensity

Fuzzy Set Approaches

- Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as using fuzzy membership graph)
- Attribute values are converted to fuzzy values
 - e.g., income is mapped into the discrete categories {low, medium, high} with fuzzy values calculated
- For a given new sample, more than one fuzzy value may apply
- Each applicable rule contributes a vote for membership in the categories
- Typically, the truth values for each predicted category are summed

Lecture-39 Prediction

What Is Prediction?

- Prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for prediction is regression
 - Linear and multiple regression
 - Non-linear regression
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions

Predictive Modeling in Databases

- Predictive modeling: Predict data values or construct generalized linear models based on the database data.
- One can only predict value ranges or category distributions
- Method outline:
 - Minimal generalization
 - Attribute relevance analysis
 - Generalized linear model construction
 - Prediction
- Determine the major factors which influence the prediction
 - Data relevance analysis: uncertainty measurement, entropy analysis, expert judgement, etc.
- Multi-level prediction: drill-down and roll-up analysis

Regress Analysis and Log-Linear Models in Prediction

- Linear regression: $Y = \alpha + \beta X$
 - Two parameters , α and β specify the line and are to be estimated by using the data at hand.
 - using the least squares criterion to the known values of Y₁,
 Y₂, ..., X₁, X₂,
- Multiple regression: Y = b0 + b1 X1 + b2 X2.
 - Many nonlinear functions can be transformed into the above.
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

Locally Weighted Regression

- Construct an explicit approximation to f over a local region surrounding query instance xq.
- Locally weighted linear regression:
 - The target function f is approximated near xq using the linear function: $\hat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x)$
 - minimize the squared error: distance-decreasing weight K
 - $\begin{array}{l} E\left(x_{q}\right) \equiv \frac{1}{2} & \sum \left(f\left(x\right) \hat{f}\left(x\right)\right)^{2} K\left(d\left(x_{q},x\right)\right) \\ \text{ the grackienta descent training_ryle:} \end{array}$
- In rhost cases at large to function is approximated by a constant, linear, or quadratic function. $K(d(x_q,x))((f(x)-\hat{f}(x))a_j(x))$ constant, linear, or quadratic function.

Lecture-40 Classification accuracy

Classification Accuracy: Estimating Error Rates

- Partition: Training-and-testing
 - use two independent data sets- training set , test set
 - used for data set with large number of samples
- Cross-validation
 - divide the data set into k subsamples
 - use k-1 subsamples as training data and one sub-sample as test data --- k-fold cross-validation
 - for data set with moderate size
- Bootstrapping (leave-one-out)
 - for small size data

Boosting and Bagging

- Boosting increases classification accuracy
 - Applicable to decision trees or Bayesian classifier
- Learn a series of classifiers, where each classifier in the series pays more attention to the examples misclassified by its predecessor
- Boosting requires only linear time and constant space

Boosting Technique — Algorithm

- Assign every example an equal weight 1/N
- For t = 1, 2, ..., T Do
 - Obtain a hypothesis (classifier) h^(t) under w^(t)
 - Calculate the error of h(t) and re-weight the examples based on the error
 - Normalize w^(t+1) to sum to 1
- Output a weighted sum of all the hypothesis, with each hypothesis weighted according to its accuracy on the training set