UNIT-5 Mining Association Rules in Large

Lecture

Databases
Topic

%k 3k 3k 5k 3k >k 3k 3k 3k 5k 5k >k 3k 3k 5k 5k 3k >k 3k 3k 5k 5k >k >k 3k %k 5k >k >k 3k 3k 5k >k >k >k 3k 5k >k >k >k >k %k >k *k k k

Lecture-27
Lecture-28

Lecture-29

Lecture-30

Lecture-31
Lecture-32

Association rule mining

Mining single-dimensional Boolean
association rules from transactional databases

Mining multilevel association rules from
transactional databases

Mining multidimensional association rules from
transactional databases and

data warehouse

From association mining to correlation analysis

Constraint-based association mining

Lecture-27/

Association rule mining

What Is Association Mining?

« Association rule mining

— Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in
transaction databases, relational databases, and other

information repositories.

« Applications

— Basket data analysis, cross-marketing, catalog design, loss-
leader analysis, clustering, classification, etc.

Association Mining

e Rule form

prediction (Boolean variables) =>
prediction (Boolean variables) [support,
confidence]

— Computer => antivirus_software [support =2%,
confidence = 60%]

— buys (x, “computer”) — buys (X,
“antivirus_software”) [0.5%, 60%]

Association Rule: Basic Concepts

Given a database of transactions each transaction is a
list of items (purchased by a customer in a visit)

Find all rules that correlate the presence of one set of
items with that of another set of items

Find frequent patterns

Example for frequent itemset mining is market basket
analysis.

Association rule performance
measures

Confidence

Support

Minimum support threshold
Minimum confidence threshold

Rule Measures: Support and

Confidence

Customer
buys both

Customer
buys beer

Customer ¢| Find all the rules X & Y = Z with minimum
uys diaper confidence and support

— support, s, probability that a transaction
contains {X g Y g Z}

— confidence, ¢, conditional probability that a
transaction having {X g Y} also contains Z

Let minimum support 50%, and minimum

Transaction ID Items Bought confidence 50%, we have

2000
1000
4000
5000

A,B,C = A= C (50%, 66.6%)
AC = C= A (50%, 100%)
A,D

B,E,F

Martket Basket Analysis

Shopping baskets

Each item has a Boolean variable representing the
presence or absence of that item.

Each basket can be represented by a Boolean vector
of values assigned to these variables.

|dentify patterns from Boolean vector
Patterns can be represented by association rules.

Association Rule Mining: A Road Map

« Boolean vs. quantitative associations

- Based on the types of values handled

— buys(x, “SQLServer”) " buys(x, “DMBook”) => buys(x,
“DBMiner”) [0.2%, 60%]

— age(x, “30..39”) A income(x, “42..48K”) => buys(x, “PC”) [1%,
75%]

+ Single dimension vs. multiple dimensional associations

« Single level vs. multiple-level analysis

10

Lecture-28

Mining single-dimensional Boolean
association rules from transactional
databases

Apriori Algorithm

e Single dimensional, single-level, Boolean
frequent item sets

* Finding frequent item sets using candidate
generation

* Generating association rules from frequent
item sets

11

Mining Association Rules—An Example

Transaction ID |ltems Bought Min. support 50%

2000 AB.C Min. confidence 50%
1000 A,C

4000 AD :[:Arfquent ltemset Sup;:)é)or/t

0

5000 B,E,F e o

1C} 50%

Forrule A= C: {A,C} 50%

support = support({A g/C}) = 50%

confidence = support({A E1C})/support({A}) = 66.6%
The Apriori principle:

Any subset of a frequent itemset must be frequent

12

Mining Frequent Itemsets: the Key Step

* Find the frequent itemsets: the sets of items that
have minimum support

— A subset of a frequent itemset must also be a frequent

itemset

e i.e., if {AB}is a frequent itemset, both {A} and {B}
should be a frequent itemset

— lteratively find frequent itemsets with cardinality from 1
to k (k-itemset)

 Use the frequent itemsets to generate association

rules.

13

14

The Apriori Algorithm

* Join Step

— C, is generated by joining L, ,with itself

* Prune Step

— Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

15

The Apriori Algorithm

Pseudo-code:

C.: Candidate itemset of size k
L. : frequent itemset of size k

L, = {frequent items};
for (k= 1; L, 1=; k++) do begin
C..; = candidates generated from L,;

for each transaction t in database do
increment the count of all candidates in C,;
contained in t

L.,;, =candidates in C,,; with min_support
end
return U, L,;

that are

The Apriori Algorithm — Example

Database D itemset|sup.| | [itemset|sup.
TID |ltems C,| {1} 2 1 11 >
1001 3 4 {2} S || {2} 3
200(235 |=CanD| 43 | 3 3 | 3
300(1235 {4} 1 (5) 3
4002 5 {5} | 3
C2 [itemset] sup C, MEIEE
L, [itemset|sup 12y | 1| ScanD {12}
{13} | 2 13| 2 | - {13}
23 |2 |— |5 |1 g gi
551 | 3 23| 2
§3 5% 5 {25} | 3 {2 5}
— {35} | 2 {3 5}
Cslitemsetl gscanD Ls|itemset sup
{235} " |{235}] 2

16

>

17

How to Generate Candidates?

* Suppose the itemsin L, are listed in an order

e Step 1: self-joining L, ,
insert into C,
select p.item,, p.item,, ..., p.item,,, q.item,_;
fromL _,p, L.,

where p.item =q.item,, ..., p.item,_,=q.item,, p.item,, < q.item,
e Step 2: pruning

forall itemsets c in C, do

forall (k-1)-subsets s of c do

if (s is not in L, ;) then delete ¢ from C,

How to Count Supports of Candidates?

e Why counting supports of candidates a problem?
— The total number of candidates can be very huge
— One transaction may contain many candidates

e Method
— Candidate itemsets are stored in a hash-tree

— Leaf node of hash-tree contains a list of itemsets and
counts

— Interior node contains a hash table

— Subset function: finds all the candidates contained in a
transaction

18

19

Example of Generating Candidates

L,={abc, abd, acd, ace, bcd}
Self-joining: L, *L,
— abcd from abc and abd

— acde from acd and ace

Pruning:
— acde is removed because ade is not in L,

C,={abcd}

20

Methods to Improve Apriori’s Efficiency

Hash-based itemset counting

— A k-itemset whose corresponding hashing bucket count is below the

threshold cannot be frequent

Transaction reduction

— A transaction that does not contain any frequent k-itemset is useless

in subsequent scans

Partitioning

— Any itemset that is potentially frequent in DB must be frequent in at

least one of the partitions of DB

Methods to Improve Apriori’s Efficiency

e Sampling

— mining on a subset of given data, lower support threshold

+ a method to determine the completeness

* Dynamic itemset counting

— add new candidate itemsets only when all of their subsets

are estimated to be frequent

21

Mining Frequent Patterns Without Candidate
Generation

e Compress a large database into a compact, Frequent-Pattern
tree (FP-tree) structure
— highly condensed, but complete for frequent pattern mining

— avoid costly database scans
 Develop an efficient, FP-tree-based frequent pattern mining
method

— A divide-and-conquer methodology: decompose mining tasks into
smaller ones

— Avoid candidate generation: sub-database test only

22

23

Lecture-29

Mining multilevel association rules
from transactional databases

Mining various kinds of association
rules

 Mining Multilevel association rules

— Concepts at different levels

* Mining Multidimensional association rules

— More than one dimensional

 Mining Quantitative association rules

— Numeric attributes

24

Multiple-Level Association Rules

ltems often form hierarchy.

ltems at the lower level are
expected to have lower support.

Rules regarding itemsets at

appropriate levels could be quite

25

useful.

Transaction database can be
encoded based on dimensions
and levels

We can explore shared multi-
level mining

Food
milk bread
/
skim 2% wheat Whjte

/

/N 7N N

Fraser | | Sunset

7N/ N
TID Items
T1 {111,121, 211, 221}
T2 {111, 211, 222, 323}
T3 {112,122, 221, 411}
T4 {111,121}
5 {111,122, 211, 221, 413}

Multi-level Association

e Uniform Support- the same minimum support for all
levels

— + One minimum support threshold. No need to
examine itemsets containing any item whose
ancestors do not have minimum support.

— — Lower level items do not occur as frequently. If
support threshold

e too high = miss low level associations

* too low = generate too many high level
associations

26

Multi-level Association

e Reduced Support- reduced minimum support
at lower levels
— There are 4 search strategies:
e Level-by-level independent
e Level-cross filtering by k-itemset

e Level-cross filtering by single item
e Controlled level-cross filtering by single item

27

Uniform Support

Multi-level mining with uniform support

Level 1 Milk
min_sup = 5%

[support = 10%]

Level 2 2% Milk
min_sup = 5% [support = 6%]

28

Reduced Support

Multi-level mining with reduced support

Level 1 Milk
. _ o
min_sup = 5% [support = 109%0]

N

| evel 2 2% Milk Skim Milk
min_sup = 3% [support = 6%] [support = 4%]

29

30

Multi-level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor”
relationships between items.

Example
— milk = wheat bread [support = 8%, confidence = 70%]
— 2% milk = wheat bread [support = 2%, confidence = 72%]

We say the first rule is an ancestor of the second rule.

A rule is redundant if its support is close to the
“expected” value, based on the rule’s ancestor.

31

Lecture-30

Mining multidimensional association
rules from transactional databases
and data warehouse

Multi-Dimensional Association

Single-dimensional rules
buys(X, “milk”) = buys(X, “bread”)

Multi-dimensional rules

— Inter-dimension association rules -no repeated predicates
age(X,”19-25") A occupation(X,“student”) = buys(X,“coke”)

— hybrid-dimension association rules -repeated predicates
age(X,”19-25") A buys(X, “popcorn”) = buys(X, “coke”)

32

Multi-Dimensional Association

e Categorical Attributes

— finite number of possible values, no ordering
among values

e Quantitative Attributes

— numeric, implicit ordering among values

33

34

Techniques for Mining MD Associations

e Search for frequent k-predicate set:
— Example: {age, occupation, buys} is a 3-predicate set.
— Techniques can be categorized by how age are treated.
1. Using static discretization of quantitative attributes

— Quantitative attributes are statically discretized by using
predefined concept hierarchies.

2. Quantitative association rules

— Quantitative attributes are dynamically discretized into
“bins”based on the distribution of the data.

3. Distance-based association rules

— This is a dynamic discretization process that considers the
distance between data points.

Static Discretization of Quantitative Attributes

@ Discretized prior to mining using concept hierarchy.
@ Numeric values are replaced by ranges.

@ In relational database, finding all frequent k-predicate sets will
require k or k+1 table scans.

@ Data cube is well suited for mining.

()
@ The cells of an n-dimensional cuboid correspond-to the

predicate sets. (age)

@ Mining from data cubescan be much faster.

(age, income)

-~ H F—-u ' -~
{age,income,auys)
AN ~7 ’ 7

35

Quantitative Association Rules
@ Numeric attributes are dynamically discretized
= Such that the confidence or compactness of the rules mined

is maximized.
@ 2-D quantitative association rules: A, .1 A Ao =
Acat
@ Cluster “adjacent” otk | |
association rules | 60-70K ‘ N
to form general Tomen | ||
rules using a 2-D L
grid. .
@ Example: o

3z 33 34 A5 36 37 I8
age(X,”30-34) A income(X,”24K -
48K™)
= buys(X,”high resolution TV”)

36

37

Lecture-31

From association mining to
correlation analysis

38

Interestingness Measurements

* Objective measures
— Two popular measurements
support
confidence

e Subjective measures
A rule (pattern) is interesting if
*it is unexpected (surprising to the user); and/or
*actionable (the user can do something with it)

Criticism to Support and Confidence

e Example

— Among 5000 students

e 3000 play basketball
e 3750 eat cereal

e 2000 both play basket ball and eat cereal

— play basketball = eat cereal [40%, 66.7%] is misleading because the

overall percentage of students eating cereal is 75% which is higher than
66.7%.

— play basketball = not eat cereal [20%, 33.3%] is far more accurate,
although with lower support and confidence

basketball |not basketball [sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000

39

Criticism to Support and Confidence

e Example

— X andY: positively correlated,

— Xand Z, negatively related

— support and confidence of
X=>7Z dominates

e We need a measure of dependent or

correlated events

P(AUB)
orr, , =
~ P(A)P(B)

 P(B|A)/P(B) is also called the lift of rule A =>

B

40

X1111/1/0/0/0|0

YIL{10/0{0/0]0|0

Z0/1|1(1/1(1|1/1
Rule |Support|Confidence
X=>Y| 25% 50%
X=>7|37.50% 75%

e Interest (correlation, lift)

41

Other Interestingness Measures: Interest

P(AAB)

P(A)P(B)

— taking both P(A) and P(B) in consideration

— P(A”B)=P(B)*P(A), if A and B are independent events

— A and B negatively correlated, if the value is less than 1;

otherwise A and B positively correlated

=
=
=
o
o
o
o

=
=
o
o
o
o
o
o

N | <[X

=
=
=
=
=
=

ltemset Support Interest
XY 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57

42

Lecture-32

Constraint-based association mining

43

Constraint-Based Mining

e |nteractive, exploratory mining

e kinds of constraints
— Knowledge type constraint- classification, association, etc.
— Data constraint: SQL-like queries
— Dimension/level constraints
— Rule constraint
— Interestingness constraints

Rule Constraints in Association Mining

e Two kind of rule constraints:

— Rule form constraints: meta-rule guided mining.

* P(x,y) " Q(x, w) > takes(x, “database systems”).
— Rule (content) constraint: constraint-based query
optimization (Ng, et al., SIGMOD’98).
e sum(LHS) <100 A min(LHS) > 20 » count(LHS) > 3 A sum(RHS) > 1000
e l-variable vs. 2-variable constraints

— 1-var: A constraint confining only one side (L/R) of the rule,
e.g., as shown above.

— 2-var: A constraint confining both sides (L and R).
e sum(LHS) < min(RHS) » max(RHS) < 5* sum(LHS)

44

Constrain-Based Association Query

e Database: (1) trans (TID, Itemset), (2) itemInfo (Item, Type, Price)
e A constrained asso. query (CAQ) is in the form of {(Sz, S2)/C },
— where Cis a set of constraints on Si1, S2 including frequency constraint
e A classification of (single-variable) constraints:
— Class constraint: ScC A. e.g. Sc Item

— Domain constraint:
e SOv, 0 €{=#,<Z%,> 2>} e.qg.S.Price <100
e vOS, B is € or ¢. e.qg. snacks ¢ S.Type
e VOS,orSOV, Oec{c,c, &, = %}
— e.g. {snacks, sodas } S.Type
— Aggregation constraint: agg(S) € v, where agg is in {min, max,
sum, count, avg},and 0 € {=,#, <, <, >, > }.
e e.g. count(Si.Type) =1, avg(Sz.Price) <100

45

46

Constrained Association Query Optimization
Problem

Given a CAQ ={ (S, S2) | C}, the algorithm should be :

— sound: It only finds frequent sets that satisfy the given
constraints C

— complete: All frequent sets satisfy the given constraints C
are found

A naive solution:

— Apply Apriori for finding all frequent sets, and then to test
them for constraint satisfaction one by one.

Our approach:

— Comprehensive analysis of the properties of constraints
and try to push them as deeply as possible inside the
frequent set computation.

Anti-monotone and Monotone Constraints

* A constraint C, is anti-monotone iff. for any

pattern S not satisfying C_, none of the super-

patterns of S can satisfy C,

* A constraint C_ is monotone iff. for any

pattern S satisfying C_, every super-pattern of

S also satisfies it

47

48

Succinct Constraint

A subset of item |_ is a succinct set, if it can be
expressed as o, (I) for some selection predicate p,
where o is a selection operator

SPc2'is a succinct power set, if there is a fixed
number of succinct set |, ..., |, I, s.t. SP can be
expressed in terms of the strict power sets of |, ..., I,
using union and minus

A constraint C_ is succinct provided SAT.(l) is a
succinct power set

49

Convertible Constraint

Suppose all items in patterns are listed in a total
order R

A constraint C is convertible anti-monotone iff a
pattern S satisfying the constraint implies that each
suffix of S w.r.t. R also satisfies C

A constraint C is convertible monotone iff a pattern S
satisfying the constraint implies that each pattern of
which S is a suffix w.r.t. R also satisfies C

50

Relationships Among Categories of
Constraints

Anti-monotonicity Monotonicity
Convertible constraints

Inconvertible constraints

Property of Constraints: Anti-Monotone

 Anti-monotonicity: If a set S violates the constraint,
any superset of S violates the constraint.

e Examples:
— sum(S.Price) < v is anti-monotone
— sum(S.Price) > v is not anti-monotone
— sum(S.Price) = v is partly anti-monotone
e Application:

— Push “sum(S.price) < 1000” deeply into iterative frequent
set computation.

51

Characterization of
Anti-Monotonicity Constraints

SOv,0e{=<2} yes
VES no
SoV no
ScV yes
S=V partly
min(S) <v no
min(S) > v yes
min(S) =v partly
max(S) <v yes
max(S) > v no
max(S) =v partly
count(S) <v yes
count(S) > v no
count(S) =v partly
sum(S) <v yes
sum(S) > v no
sum(S) =v partly
avg(S)ov,0 e{=<2>} convertible
(frequent constraint) (yes)

Example of Convertible Constraints: Avg(S) O V

 Let R be the value descending order over the
set of items

—E.g.1={9, 8§, 6, 4, 3, 1}
e Avg(S) > v is convertible monotone w.r.t. R
— If Sis a suffix of S,, avg(S,) = avg(S)
e {8, 4, 3}is a suffix of {9, 8, 4, 3}
e avg({9, 8, 4, 3})=6 > avg({8, 4, 3})=5
— If S satisfies avg(S) 2v, so does S,

{8, 4, 3} satisfies constraint avg(S) > 4, so does {9, 8, 4,
3}

53

Property of Constraints: Succinctness

e Succinctness:

— For any set S1 and S: satisfying C, S1U Sz satisfies C

— Given At is the sets of size 1 satisfying C, then any set S
satisfying C are based on As, i.e., it contains a subset belongs
to A1,

e Example:
— sum(S.Price) > v is not succinct
— min(S.Price) < v is succinct

Optimization:

— If Cis succinct, then C is pre-counting prunable. The
satisfaction of the constraint alone is not affected by the
iterative support counting.

54

Characterization of Constraints by
Succinctness

SOv,0e{=<2} Yes
VeES yes
SoVv yes
ScV yes
S=V yes
min(S) < v yes
min(S) > v yes
min(S) = v yes
max(S) < v yes
max(S) > v yes
max(S) = v yes
count(S) <v weakly
count(S) > v weakly
count(S) =v weakly
sum(S) < v no
sum(S) > v no
sum(S)= v no
avg(S)ov,0 e{=<2>} no

(frequent constraint) (o)

