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What is Concept Description?



What is Concept Description?

e Descriptive vs. predictive data mining

— Descriptive mining: describes concepts or task-relevant data
sets in concise, summarative, informative, discriminative
forms

— Predictive mining: Based on data and analysis, constructs
models for the database, and predicts the trend and
properties of unknown data

e Concept description:

— Characterization: provides a concise and succinct
summarization of the given collection of data

— Comparison: provides descriptions comparing two or more
collections of data



Concept Description vs. OLAP

 Concept description:

— can handle complex data types of the attributes
and their aggregations

— a more automated Process

* OLAP:

— restricted to a small number of dimension and
measure types

— user-controlled process
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Data generalization and summarization-
based characterization



Data Generalization and Summarization-based
Characterization

 Data generalization

— A process which abstracts a large set of task-relevant data in
a database from a low conceptual levels to higher ones.

1
2
3
4

— Approaches: 5 Conceptual levels

e Data cube approach(OLAP approach)
e Attribute-oriented induction approach



Characterization: Data Cube Approach

e Perform computations and store results in data cubes
e Strength

— An efficient implementation of data generalization

— Computation of various kinds of measures

e count(), sum(), average( ), max()
— Generalization and specialization can be performed on a data cube
by roll-up and drill-down
* Limitations
— handle only dimensions of simple nonnumeric data and measures of
simple aggregated numeric values.

— Lack of intelligent analysis, can’t tell which dimensions should be
used and what levels should the generalization reach



Attribute-Oriented Induction

* Proposed in 1989 (KDD ‘89 workshop)

 Not confined to categorical data nor particular
measures.

e Howitis done?

— Collect the task-relevant data( initial relation) using a
relational database query

— Perform generalization by attribute removal or attribute
generalization.

— Apply aggregation by merging identical, generalized tuples
and accumulating their respective counts.

— Interactive presentation with users.



Basic Principles of Attribute-Oriented
Induction

e Data focusing

— task-relevant data, including dimensions, and the result is the initial
relation.

e Attribute-removal
— remove attribute A if there is a large set of distinct values for A but
— (1) there is no generalization operator on A, or

— (2) A’s higher level concepts are expressed in terms of other attributes.



Basic Principles of Attribute-Oriented Induction

e Attribute-generalization

t
t

f there is a large set of distinct values for A, and
nere exists a set of generalization operators on A,

nen select an operator and generalize A.

e Attribute-threshold control

e Generalized relation threshold control

— control the final relation/rule size.
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Basic Algorithm for Attribute-Oriented Induction

Initial Relation

— Query processing of task-relevant data, deriving the initial
relation.

* Pre Generalization

— Based on the analysis of the number of distinct values in each
attribute, determine generalization plan for each attribute:
removal? or how high to generalize?
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Basic Algorithm for Attribute-Oriented Induction

e Prime Generalization

— Based on the PreGen plan, perform generalization to the
right level to derive a “prime generalized relation”,
accumulating the counts.

Presentation

— User interaction: (1) adjust levels by drilling, (2) pivoting,
(3) mapping into rules, cross tabs, visualization
presentations.
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Example

DMAQL: Describe general characteristics of graduate students
in the Big-University database

use Big_University DB
mine characteristics as “Science Students”

In relevance to name, gender, major, birth_place,
birth _date, residence, phone#, gpa

from student
where status in “graduate”

Corresponding SQL statement:

Select name, gender, major, birth_place, birth_date,
residence, phone#, gpa

from student
where statusin {“Msc”, “MBA”, “PhD” }



Class Characterization: An Example

Name Gender | Major | Birth-Place Birth_date| Residence Phone# | GPA
Initial Jim M CS Vancouver,BC, 8-12-76 3511 Main St., | 687-4598 | 3.67
Relation Woodman Canada Richmond
Scott M CS Montreal, Que,| 28-7-75 345 1st Ave., 253-9106 | 3.70
Lachance Canada Richmond
Lauralee | F Physics| Seattle, WA, USA| 25-8-70 125 Austin Ave., | 420-5232 | 3.83
Burnaby
Removed Retained | Sci,Eng, | Country Age range é.ity Removed| Excl,
Bus VG,..
Gender | Major Birth_region | Age_range | Residence | GPA Count
Prime _ M | Science| Canada 20-25 Richmond | Very-good 16
Generalized F Science|  Foreign 25-30 Burnaby | Excellent 22
Relation
Birth_Region
Canada Foreign Total
Gender
M 16 14 30
F 10 22 32
Total 26 36 62
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Presentation of Generalized Results

e Generalized relation

— Relations where some or all attributes are generalized, with counts or
other aggregation values accumulated.

e Cross tabulation
— Mapping results into cross tabulation form (similar to contingency tables).
— Visualization techniques:
— Pie charts, bar charts, curves, cubes, and other visual forms.

* (Quantitative characteristic rules

— Mapping generalized result into characteristic rules with quantitative
information associated with it,

grad (x) Amale(x)=
birth _region(x)="Canada"[t:53%]v birth _region(x)="foreign"[t:47%].
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Presentation—Generalized Relation

location item sales (1n mullion dollars) | count (i thousands)
Asia TV 15 300
Eurape TV 12 250
North_Amenca | TV 28 450
Asia computer 120 1000
Europe computer 150 1200
North_America | computer 200 1800

16

Table 5.3: A generalized relation for the sales m 1997,




Presentation—Crosstab
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location \ item TV computer both-items
sales | count || sales | count || sales | count
Asia 15 300 120 1000 135 1300
FEurope 12 250 150 1200 162 1450
North-America 28 450 200 | 1800 228 | 2250
all_regions 45 1000 470 4000 523 2000

Table 5.4: A crosstab for the sales in 1997,




Implementation by Cube Technology

e Construct a data cube on-the-fly for the given data
mining query
— Facilitate efficient drill-down analysis
— May increase the response time

— A balanced solution: precomputation of “subprime”
relation

 Use a predefined & precomputed data cube
— Construct a data cube beforehand

— Facilitate not only the attribute-oriented induction, but
also attribute relevance analysis, dicing, slicing, roll-up
and drill-down

— Cost of cube computation and the nontrivial storage
overhead
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Lecture-24

Analytical characterization: Analysis of attribute

relevance



Characterization vs. OLAP

Similarity:

— Presentation of data summarization at multiple levels of
abstraction.

— Interactive drilling, pivoting, slicing and dicing.

Differences:

— Automated desired level allocation.

— Dimension relevance analysis and ranking when there are
many relevant dimensions.

— Sophisticated typing on dimensions and measures.

— Analytical characterization: data dispersion analysis.

20
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Attribute Relevance Analysis
e Why?

— Which dimensions should be included?

— How high level of generalization?

— Automatic vs. interactive

— Reduce # attributes; easy to understand patterns

e What?

— statistical method for preprocessing data
 filter out irrelevant or weakly relevant attributes
e retain or rank the relevant attributes

— relevance related to dimensions and levels
— analytical characterization, analytical comparison
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Attribute relevance analysis

Data Collection
Analytical Generalization

Use information gain analysis to identify highly
relevant dimensions and levels.

Relevance Analysis

Sort and select the most relevant dimensions and
levels.

Attribute-oriented Induction for class description

— On selected dimension/level
— OLAP operations (drilling, slicing) on relevance rules
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Relevance Measures

e Quantitative relevance measure determines
the classifying power of an attribute within a
set of data.

e Methods
— information gain (ID3)
— gain ratio (C4.5)
— gini index
— 2 contingency table statistics
— uncertainty coefficient
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Information-Theoretic Approach

Decision tree

— each internal node tests an attribute

— each branch corresponds to attribute value
— each leaf node assigns a classification

ID3 algorithm

— build decision tree based on training objects with known
class labels to classify testing objects

— rank attributes with information gain measure
— minimal height
e the least number of tests to classify an object
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Top-Down Induction of Decision Tree

Attributes = {Outlook, Temperature, Humidity, Wind}
PlayTennis = {yes, no}

Outlook

no yes no yes
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Entropy and Information Gain
S contains s, tuples of class C, fori={1, ..., m}

Information measures info required to classify any
arbitrary tuple

Entropy of attribytﬁ.Am\)\Liﬂf}%I@ge%{al,az,...,av}

' Stj+ ...+ Smj

Information ggfﬁéé by braﬁ(élﬁi'hsg)on attribute A

Gain(A) = I(s1,S2,...,5m) — E(A)
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Example: Analytical Characterization

e Task

— Mine general characteristics describing graduate students
using analytical characterization

e Given

— attributes name, gender, major, birth_place, birth_date,
phone#, and gpa

— Gen(a;) = concept hierarchies on a,

— U, = attribute analytical thresholds for a,

— T, = attribute generalization thresholds for a,
— R = attribute relevance threshold



Example: Analytical Characterization

e 1. Data collection
— target class: graduate student
— contrasting class: undergraduate student

* 2. Analytical generalization using U,

— attribute removal

* remove name and phone#

— attribute generalization
e generalize major, birth_place, birth_date and gpa

e accumulate counts

— candidate relation: gender, major, birth _country,
age _range and gpa

28
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Example: Analytical characterization

gender | major birth_country |age_range | gpa count
M Science Canada 20-25 Very good |16
F Science Foreign 25-30 Excellent 22
M Engineering | Foreign 25-30 Excellent 18
F Science Foreign 25-30 Excellent 25
M Science Canada 20-25 Excellent 21
F Engineering | Canada 20-25 Excellent 18

Candidate relation for Target class:

Graduate students (2=120)

gender | major birth_country |age range | gpa count
M Science Foreign <20 Very good |18
F Business Canada <20 Fair 20
M Business Canada <20 Fair 22
F Science Canada 20-25 Fair 24
M Engineering | Foreign 20-25 Very good |22
F Engineering | Canada <20 Excellent 24

Candidate relation for Contrasting class: Undergraduate students (2=130)




Example: Analytical characterization

e 3. Relevance analysis

— Calculate expected info required to classify an arbitrary
tuple

129 109,229 199,154,139 _ 09988

1(s1,52)=1(120130) = — 0 — 0
(51,82) = 1(120130) = =5 - plog 2oy =2 o leg 25

— Calculate entropy of each attribute: e.g. major

For major=""Science”: S$11=84 | $,=42 1(S11,521)=0.9183
For major=""Engineering”: S;,=36/ S=46 1(S12,522)=0.9892
For major=”BusineSS”: S13=0 Sy3=42 |(513,523):O
Number of grad
students in “Science” Number of undergrad

students in “Science”
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Example: Analytical Characterization

e Calculate expected info required to classify a given
sample if S is partitioned according to the attribute

E(major) = % |(811,821)+28—520 |(812,322)+24?20 I (S13,523)=0.7873

Gain(major) = I(s1,52)— E(major) = 0.2115
e (Calculate information gain for each attribute

— Information gain for all attributes

Gain(gender) =0.0003
Gain(birth_country) = 0.0407
Gain(major) =0.2115
Gain(gpa) = 0.4490
Gain(age_range) =0.5971



Example: Analytical characterization

* 4. Initial working relation (W,) derivation
— R=0.1

— remove irrelevant/weakly relevant attributes from candidate relation
=> drop gender, birth_country

— remove contrasting class candidate relation

major age_range |gpa count
Science 20-25 Very good |16
Science 25-30 Excellent |47
Science 20-25 Excellent 21
Engineering | 20-25 Excellent 18
Engineering | 25-30 Excellent 18

Initial target class working relation W,: Graduate students
* 5. Perform attribute-oriented induction on W, using T.
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Lecture-25

Mining class comparisons:
Discriminating between different
classes



Mining Class Comparisons

« Comparison
— Comparing two or more classes.
« Method
— Partition the set of relevant data into the target class and the

contrasting classes
— Generalize both classes to the same high level concepts

— Compare tuples with the same high level descriptions

34



Mining Class Comparisons

— Present for every tuple its description and two measures:
« support - distribution within single class
« comparison - distribution between classes

— Highlight the tuples with strong discriminant features

« Relevance Analysis

— Find attributes (features) which best distinguish different
classes.

35
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Example: Analytical comparison

e Task

— Compare graduate and undergraduate students using
discriminant rule.

— DMQL query

use Big_University DB
mine comparison as “grad_vs_undergrad_students”

In relevance to name, gender, major, birth_place, birth_date, residence,
phone#, gpa

for “graduate_students”

where status in “graduate”
versus “undergraduate_students”
where status in “undergraduate”
analyze count%

from student



Example: Analytical comparison

e Given

— attributes name, gender, major, birth_place,
birth_date, residence, phone# and gpa

— Gen(a;) = concept hierarchies on attributes a,
— U, = attribute analytical thresholds for attributes a

— T. = attribute generalization thresholds for
attributes a,

— R = attribute relevance threshold

37



Example: Analytical comparison

e 1. Data collection
— target and contrasting classes

e 2. Attribute relevance analysis
— remove attributes name, gender, major, phone#

e 3. Synchronous generalization
— controlled by user-specified dimension thresholds
— prime target and contrasting classes relations/cuboids

38
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Example: Analytical comparison

Birth_country | Age range | Gpa Count%
Canada 20-25 Good 5.53%
Canada 25-30 Good 2.32%
Canada Over_30 Very good |5.86%
Other Over_30 Excellent 4.68%

Prime generalized relation for the target class: Graduate students

Birth_country | Age_range | Gpa Count%
Canada 15-20 Fair 5.53%
Canada 15-20 Good 4.53%
Canada 25-30 Good 5.02%
Other Over 30 Excellent | 0.68%

Prime generalized relation for the contrasting class: Undergraduate students




Example: Analytical comparison

e 4. Drill down, roll up and other OLAP operations on

target and contrasting classes to adjust levels of
abstractions of resulting description

e 5. Presentation

— as generalized relations, crosstabs, bar charts, pie
charts, or rules

— contrasting measures to reflect comparison
between target and contrasting classes

e count%

40



Quantitative Discriminant Rules

e Cj=targetclass

* g, = a generalized tuple covers some tuples of class
— but can also cover some tuples of contrasting class
e d-weight
— range: [0, 1]
d - weight = mcount(q ac Cj)
> count(q a € Ci)
i=1

e quantitative discriminant rule form

Vv X, target class(X) < condition(X) [d :d_weight]

41



Example: Quantitative Discriminant Rule

Status Birth_country |Age range |Gpa |Count
Graduate Canada 25-30 Good |90
Undergraduate | Canada 25-30 Good |210

Count distribution between graduate and undergraduate students for a generalized tuple

e Quantitative discriminant rule

VX, graduate studen(X) <
birth_countryX) ="Canadd'rage_rangg X) ="25-30"'Agpa(X) ="good" [d :30%]
— where 90/(90+120) = 30%

42
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Class Description

e Quantitative characteristic rule
Vv X, target_class(X) = condition(X) [t :t weight]
— necessary

e Quantitative discriminant rule
Vv X, target _class(X) < condition(X) [d :d_ weight]
— sufficient
 Quantitative description rule
Vv X, target class(X) <
condition 1(X) [t : w1, d : w'i] v ... v condition n(X) [t : Wn,d : W'n]
— necessary and sufficient



Example: Quantitative Description

Rule
L ocation/item TV Computer Both_items
Count | t-wt d-wt | Count |t-wt d-wt Count | t-wt d-wt
Europe 80 25% 40% 240 75% 30% 320 100% 32%
N_Am 120 17.65% | 60% 560 82.35% 70% 680 100% 68%
Bot_h_ 200 20% 100% | 800 80% 100% | 1000 100% 100%
regions

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and
computers sold at AllElectronics in 1998

e Quantitative description rule for target class Europe

Vv X,Europe(X) =
(item(X)="TV" ) [t:25%,d : 40%]v (item(X)="computer" ) [t : 75%,d : 30%]

44
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Lecture-26

Mining descriptive statistical
measures in large databases



Mining Data Dispersion Characteristics

« Motivation

— To better understand the data: central tendency, variation and
spread

- Data dispersion characteristics

— median, max, min, quantiles, outliers, variance, etc.

« Numerical dimensions -correspond to sorted intervals

— Data dispersion: analyzed with multiple granularities of precision

— Boxplot or quantile analysis on sorted intervals

« Dispersion analysis on computed measures
— Folding measures into numerical dimensions

— Boxplot or quantile analysis on the transformed cube

46



Measuring the Central Tendency

1
e« Mean X =—) X, l
n le | Z Wi X5
— Weighted arithmetic mean X = =

_n
D W,
i=1

— Middle value if odd number of values, or average of the middle two

« Median: A holistic measure

values otherwise _ n/2-— (Z )l
| | _ median= L, +( )C
— estimated by interpolation fmedian
« Mode

— Value that occurs most frequently in the data
— Unimodal, bimodal, trimodal

. mean—mode = 3x (mean—median)
— Empirical formula:

47



Measuring the Dispersion of Data

« Quartiles, outliers and boxplots
— Quartiles: Q; (25 percentile), Q; (75" percentile)
— Inter-quartile range: IQR = Q;—Q,
— Five number summary: min, Q;, M, Q;, max

— Boxplot: ends of the box are the quartiles, median is marked,
whiskers, and plot outlier individually

— Outlier: usually, a value higher/lower than 1.5 x IQR

« Variance and standard deviation

— Variance s?: (algebraic, scalable computation)

2 1 n o2 1 L 2_1_ - 2
> 7 —:I.izzll(xi X)" = _1[2::1 . n (;1 ¥i) "

n n
— Standard deviation s is the square root of variance s?

48




Boxplot Analysis

* Five-number summary of a distribution:
Minimum, Q1, M, Q3, Maximum
 Boxplot

— Data is represented with a box

— The ends of the box are at the first and third quartiles, i.e.,
the height of the box is IRQ

— The median is marked by a line within the box

— Whiskers: two lines outside the box extend to Minimum
and Maximum

49
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A Boxplot
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Visualization of Data Dispersion: Boxplot
Analysis




Mining Descriptive Statistical Measures in Large
Databases

e Variance

> 1 N 2 1 , 1 2
PR D

e Standard deviation: the square root of the variance
— Measures spread about the mean
— Itis zero if and only if all the values are equal
— Both the deviation and the variance are algebraic
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Histogram Analysis

 Graph displays of basic statistical class descriptions

— Frequency histograms

e A univariate graphical method
e Consists of a set of rectangles that reflect the counts or frequencies
of the classes present in the given data
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Quantile Plot

e Displays all of the data (allowing the user to assess
both the overall behavior and unusual occurrences)

e Plots quantile information

— For a data x; data sorted in increasing order, f. indicates

that approximately 100 f.% of the data are below or equal
to the value x.

nnlt e i

M-vallim:



Quantile-Quantile (Q-Q) Plot

 Graphs the quantiles of one univariate distribution
against the corresponding quantiles of another

* Allows the user to view whether there is a shift in
going from one distribution to another
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Scatter plot

* Provides a first look at bivariate data to see clusters
of points, outliers, etc

e Each pair of values is treated as a pair of coordinates
and plotted as points in the plane
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Loess Curve

 Adds a smooth curve to a scatter plot in order to

provide better perception of the pattern of
dependence

e Loess curve is fitted by setting two parameters: a
smoothing parameter, and the degree of the

polynomials that are fitted by the regression
a0
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Graphic Displays of Basic Statistical Descriptions

Histogram
Boxplot

Quantile plot: each value x; is paired with f; indicating that
approximately 100 f; % of data are <x;

Quantile-quantile (g-qg) plot: graphs the quantiles of one
univariant distribution against the corresponding quantiles of
another

Scatter plot: each pair of values is a pair of coordinates and
plotted as points in the plane

Loess (local regression) curve: add a smooth curve to a
scatter plot to provide better perception of the pattern of
dependence
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AO Induction vs. Learning-from-
example Paradigm

Difference in philosophies and basic assumptions

— Positive and negative samples in learning-from-example: positive used
for generalization, negative - for specialization

— Positive samples only in data mining: hence generalization-based, to
drill-down backtrack the generalization to a previous state

Difference in methods of generalizations
— Machine learning generalizes on a tuple by tuple basis
— Data mining generalizes on an attribute by attribute basis
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Comparison of Entire vs. Factored

Version Space

The entlire version space

graduate " science

graduate * math MLS. # science Ph.D. # science graduate * physics

P

ML.S. » math Ph.D. * math M.S. * physics Ph.D. * physics

The factored version space

graduate science

ML.S. Ph.D.

math physics
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Incremental and Parallel Mining of
Concept Description

* Incremental mining: revision based on newly added data ADB

— Generalize ADB to the same level of abstraction in the generalized
relation R to derive AR

— Union R U AR, i.e., merge counts and other statistical information to
produce a new relation R’

 Similar philosophy can be applied to data sampling, parallel
and/or distributed mining, etc.





