UNIT-4 Characterization and Comparison

Lecture	Topic
*******	********
Lecture-22	What is concept description?
Lecture-23	Data generalization and
	summarization-based characterization
Lecture-24	Analytical characterization:
	Analysis of attribute relevance
Lecture-25	Mining class comparisons: Discriminating
	between different classes
Lecture-26	Mining descriptive statistical
	measures in large databases

Lecture-22

What is Concept Description?

What is Concept Description?

- Descriptive vs. predictive data mining
 - Descriptive mining: describes concepts or task-relevant data sets in concise, summarative, informative, discriminative forms
 - Predictive mining: Based on data and analysis, constructs models for the database, and predicts the trend and properties of unknown data
- Concept description:
 - Characterization: provides a concise and succinct summarization of the given collection of data
 - Comparison: provides descriptions comparing two or more collections of data

Concept Description vs. OLAP

- Concept description:
 - can handle complex data types of the attributes and their aggregations
 - a more automated process
- OLAP:
 - restricted to a small number of dimension and measure types
 - user-controlled process

Lecture-23

Data generalization and summarizationbased characterization

Data Generalization and Summarization-based Characterization

Data generalization

 A process which abstracts a large set of task-relevant data in a database from a low conceptual levels to higher ones.

– Approaches:

- Conceptual levels
- Data cube approach(OLAP approach)
- Attribute-oriented induction approach

Characterization: Data Cube Approach

Perform computations and store results in data cubes

Strength

- An efficient implementation of data generalization
- Computation of various kinds of measures
 - count(), sum(), average(), max()
- Generalization and specialization can be performed on a data cube by roll-up and drill-down

Limitations

- handle only dimensions of simple nonnumeric data and measures of simple aggregated numeric values.
- Lack of intelligent analysis, can't tell which dimensions should be used and what levels should the generalization reach

Attribute-Oriented Induction

- Proposed in 1989 (KDD '89 workshop)
- Not confined to categorical data nor particular measures.
- How it is done?
 - Collect the task-relevant data(initial relation) using a relational database query
 - Perform generalization by attribute removal or attribute generalization.
 - Apply aggregation by merging identical, generalized tuples and accumulating their respective counts.
 - Interactive presentation with users.

Basic Principles of Attribute-Oriented Induction

Data focusing

 task-relevant data, including dimensions, and the result is the initial relation.

Attribute-removal

- remove attribute A if there is a large set of distinct values for A but
- (1) there is no generalization operator on A, or
- (2) A's higher level concepts are expressed in terms of other attributes.

Basic Principles of Attribute-Oriented Induction

- Attribute-generalization
 - If there is a large set of distinct values for A, and there exists a set of generalization operators on A, then select an operator and generalize A.
- Attribute-threshold control
- Generalized relation threshold control
 - control the final relation/rule size.

Basic Algorithm for Attribute-Oriented Induction

- Initial Relation
 - Query processing of task-relevant data, deriving the initial relation.
- Pre Generalization
 - Based on the analysis of the number of distinct values in each attribute, determine generalization plan for each attribute: removal? or how high to generalize?

Basic Algorithm for Attribute-Oriented Induction

Prime Generalization

 Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized relation", accumulating the counts.

Presentation

User interaction: (1) adjust levels by drilling, (2) pivoting,
 (3) mapping into rules, cross tabs, visualization presentations.

Example

 DMQL: Describe general characteristics of graduate students in the Big-University database

```
use Big_University_DB
mine characteristics as "Science_Students"
in relevance to name, gender, major, birth_place,
  birth_date, residence, phone#, gpa
from student
where status in "graduate"
```

Corresponding SQL statement:

```
Select name, gender, major, birth_place, birth_date,
  residence, phone#, gpa
from student
where status in {"Msc", "MBA", "PhD" }
```

Lecture-23 - Data generalization and summarization-based characterization

Class Characterization: An Example

Initial Relation

Name	Gender	Major	Birth-Place	Birth_date	Residence	Phone #	GPA
Jim	M	CS	Vancouver,BC,	8-12-76	3511 Main St.,	687-4598	3.67
Woodman			Canada		Richmond		
Scott	M	CS	Montreal, Que,	28-7-75	345 1st Ave.,	253-9106	3.70
Lachance			Canada		Richmond		
Laura Lee	F	Physics	Seattle, WA, USA	25-8-70	125 Austin Ave.,	420-5232	3.83
•••	•••	•••	•••	•••	Burnaby	•••	•••
Removed	Retained	Sci,Eng,	Country	Age range	 City	Removed	Excl,
		Bus					VG,

Prime Generalized Relation

Gender	Major	Birth_region	Age_range	Residence	GPA	Count
M	Science	Canada	20-25	Richmond	Very-good	16
F	Science	Foreign	25-30	Burnaby	Excellent	22

Birth_Region Gender	Canada	Foreign	Total
M	16	14	30
F	10	22	32
Total	26	36	62

Lecture-23 - Data generalization and summarization-based characterization

Presentation of Generalized Results

Generalized relation

 Relations where some or all attributes are generalized, with counts or other aggregation values accumulated.

Cross tabulation

- Mapping results into cross tabulation form (similar to contingency tables).
- Visualization techniques:
- Pie charts, bar charts, curves, cubes, and other visual forms.

Quantitative characteristic rules

Mapping generalized result into characteristic rules with quantitative information associated with it,

```
grad(x) \land male(x) \Rightarrow
birth\_region(x) = "Canada"[t:53\%] \lor birth\_region(x) = "foreign"[t:47\%].
Lecture-23 - Data generalization and summarization-based characterization
```

Presentation—Generalized Relation

location	item	sales (in million dollars)	count (in thousands)
Asia	TV	15	300
Europe	TV	12	250
North_America	TV	28	450
Asia	computer	120	1000
Europe	computer	150	1200
North_America	computer	200	1800

Table 5.3: A generalized relation for the sales in 1997.

Presentation—Crosstab

$location \setminus item$	TV		$\operatorname{computer}$		$both_items$	
	sales	count	sales	count	sales	count
Asia	15	300	120	1000	135	1300
Europe	12	250	150	1200	162	1450
North_America	28	450	200	1800	228	2250
all_regions	45	1000	470	4000	525	5000

Table 5.4: A crosstab for the sales in 1997.

Implementation by Cube Technology

- Construct a data cube on-the-fly for the given data mining query
 - Facilitate efficient drill-down analysis
 - May increase the response time
 - A balanced solution: precomputation of "subprime" relation
- Use a predefined & precomputed data cube
 - Construct a data cube beforehand
 - Facilitate not only the attribute-oriented induction, but also attribute relevance analysis, dicing, slicing, roll-up and drill-down
 - Cost of cube computation and the nontrivial storage overhead

Lecture-24

Analytical characterization: Analysis of attribute relevance

Characterization vs. OLAP

Similarity:

- Presentation of data summarization at multiple levels of abstraction.
- Interactive drilling, pivoting, slicing and dicing.

Differences:

- Automated desired level allocation.
- Dimension relevance analysis and ranking when there are many relevant dimensions.
- Sophisticated typing on dimensions and measures.
- Analytical characterization: data dispersion analysis.

Attribute Relevance Analysis

Why?

- Which dimensions should be included?
- How high level of generalization?
- Automatic vs. interactive
- Reduce # attributes; easy to understand patterns

• What?

- statistical method for preprocessing data
 - filter out irrelevant or weakly relevant attributes
 - retain or rank the relevant attributes
- relevance related to dimensions and levels
- analytical characterization, analytical comparison

Attribute relevance analysis

- Data Collection
- Analytical Generalization
- Use information gain analysis to identify highly relevant dimensions and levels.
- Relevance Analysis
- Sort and select the most relevant dimensions and levels.
- Attribute-oriented Induction for class description
 - On selected dimension/level
 - OLAP operations (drilling, slicing) on relevance rules

Relevance Measures

- Quantitative relevance measure determines the classifying power of an attribute within a set of data.
- Methods
 - information gain (ID3)
 - gain ratio (C4.5)
 - gini index
 - $-\chi^2$ contingency table statistics
 - uncertainty coefficient

Information-Theoretic Approach

- Decision tree
 - each internal node tests an attribute
 - each branch corresponds to attribute value
 - each leaf node assigns a classification
- ID3 algorithm
 - build decision tree based on training objects with known class labels to classify testing objects
 - rank attributes with information gain measure
 - minimal height
 - the least number of tests to classify an object

Top-Down Induction of Decision Tree

Attributes = {Outlook, Temperature, Humidity, Wind} PlayTennis = {yes, no}

Lecture-24 - Analytical characterization: Analysis of attribute relevance

Entropy and Information Gain

- S contains s_i tuples of class C_i for i = {1, ..., m}
- Information measures info required to classify any arbitrary tuple
- Entropy of attribute A_m with $values \{a_1, a_2, ..., a_v\}$
- Information gaine $\int_{-\infty}^{\infty} \frac{s_{1j} + ... + s_{mj}}{by branching} I(s_{1j}, ..., s_{mj})$ on attribute A

$$Gain(A) = I(s_1, s_2, ..., s_m) - E(A)$$

Example: Analytical Characterization

Task

 Mine general characteristics describing graduate students using analytical characterization

Given

- attributes name, gender, major, birth_place, birth_date, phone#, and gpa
- $Gen(a_i)$ = concept hierarchies on a_i
- $-U_i$ = attribute analytical thresholds for a_i
- $-T_i$ = attribute generalization thresholds for a_i
- -R = attribute relevance threshold

Example: Analytical Characterization

- 1. Data collection
 - target class: graduate student
 - contrasting class: undergraduate student
- 2. Analytical generalization using U_i
 - attribute removal
 - remove *name* and *phone#*
 - attribute generalization
 - generalize major, birth_place, birth_date and gpa
 - accumulate counts
 - candidate relation: gender, major, birth_country,
 age_range and gpa

Example: Analytical characterization

gender	major	birth_country	age_range	gpa	count
M	Science	Canada	20-25	Very_good	16
F	Science	Foreign	25-30	Excellent	22
M	Engineering	Foreign	25-30	Excellent	18
F	Science	Foreign	25-30	Excellent	25
M	Science	Canada	20-25	Excellent	21
F	Engineering	Canada	20-25	Excellent	18

Candidate relation for Target class: Graduate students (Σ =120)

gender	major	birth_country	age_range	gpa	count
M	Science	Foreign	<20	Very_good	18
F	Business	Canada	<20	Fair	20
M	Business	Canada	<20	Fair	22
F	Science	Canada	20-25	Fair	24
M	Engineering	Foreign	20-25	Very_good	22
F	Engineering	Canada	<20	Excellent	24

Candidate relation for Contrasting class: Undergraduate students (Σ =130)

Lecture-24 - Analytical characterization: Analysis of attribute relevance

Example: Analytical characterization

- 3. Relevance analysis
 - Calculate expected info required to classify an arbitrary tuple

$$I(s_1, s_2) = I(120,130) = -\frac{120}{250}log_2\frac{120}{250} - \frac{130}{250}log_2\frac{130}{250} = 0.9988$$

Calculate entropy of each attribute: e.g. major

For major="Science":
$$S_{11}=84$$
 $S_{21}=42$ $I(s_{11},s_{21})=0.9183$
For major="Engineering": $S_{12}=36$ $S_{22}=46$ $I(s_{12},s_{22})=0.9892$
For major="Business": $S_{13}=0$ $S_{23}=42$ $I(s_{13},s_{23})=0$
Number of grad $S_{23}=42$ $I(s_{13},s_{23})=0$
Number of undergrad students in "Science"

Example: Analytical Characterization

 Calculate expected info required to classify a given sample if S is partitioned according to the attribute

$$E(major) = \frac{126}{250}I(s_{11}, s_{21}) + \frac{82}{250}I(s_{12}, s_{22}) + \frac{42}{250}I(s_{13}, s_{23}) = 0.7873$$

$$Gain(major) = I(s_1, s_2) - E(major) = 0.2115$$

Calculate information gain for each attribute

Information gain for all attributes

Gain(gender) = 0.0003Gain(birth_country) = 0.0407Gain(major) = 0.2115Gain(gpa) = 0.4490Gain(age range) = 0.5971

Example: Analytical characterization

- 4. Initial working relation (W₀) derivation
 - -R = 0.1
 - remove irrelevant/weakly relevant attributes from candidate relation => drop gender, birth_country
 - remove contrasting class candidate relation

major	age_range	gpa	count
Science	20-25	Very_good	16
Science	25-30	Excellent	47
Science	20-25	Excellent	21
Engineering	20-25	Excellent	18
Engineering	25-30	Excellent	18

Initial target class working relation W₀: Graduate students

• 5. Perform attribute-oriented induction on W₀ using T_i

Lecture-25 Mining class comparisons: Discriminating between different classes

Mining Class Comparisons

Comparison

Comparing two or more classes.

Method

- Partition the set of relevant data into the target class and the contrasting classes
- Generalize both classes to the same high level concepts
- Compare tuples with the same high level descriptions

Mining Class Comparisons

- Present for every tuple its description and two measures:
 - support distribution within single class
 - comparison distribution between classes
- Highlight the tuples with strong discriminant features
- Relevance Analysis
 - Find attributes (features) which best distinguish different classes.

Example: Analytical comparison

Task

- Compare graduate and undergraduate students using discriminant rule.
- DMQL query

```
use Big_University_DB
mine comparison as "grad_vs_undergrad_students"
in relevance to name, gender, major, birth_place, birth_date, residence, phone#, gpa
for "graduate_students"
where status in "graduate"
versus "undergraduate_students"
where status in "undergraduate"
analyze count%
from student
```

Given

- attributes name, gender, major, birth_place,
 birth_date, residence, phone# and gpa
- Gen(a_i) = concept hierarchies on attributes a_i
- $-U_i$ = attribute analytical thresholds for attributes a_i
- $-T_i$ = attribute generalization thresholds for attributes a_i
- R = attribute relevance threshold

- 1. Data collection
 - target and contrasting classes
- 2. Attribute relevance analysis
 - remove attributes name, gender, major, phone#
- 3. Synchronous generalization
 - controlled by user-specified dimension thresholds
 - prime target and contrasting classes relations/cuboids

Birth_country	Age_range	Gpa	Count%	
Canada	20-25	Good	5.53%	
Canada	25-30	Good	2.32%	
Canada	Over_30	Very_good	5.86%	
	•••	•••	•••	
Other	Over_30	Excellent	4.68%	

Prime generalized relation for the target class: Graduate students

Birth_country	Age_range	Gpa	Count%	
Canada	15-20	Fair	5.53%	
Canada	15-20	Good	4.53%	
	•••	•••	•••	
Canada	25-30	Good	5.02%	
	•••	•••	•••	
Other	Over_30	Excellent	0.68%	

Prime generalized relation for the contrasting class: Undergraduate students

- 4. Drill down, roll up and other OLAP operations on target and contrasting classes to adjust levels of abstractions of resulting description
- 5. Presentation
 - as generalized relations, crosstabs, bar charts, pie charts, or rules
 - contrasting measures to reflect comparison between target and contrasting classes
 - count%

Quantitative Discriminant Rules

- Cj = target class
- q_a = a generalized tuple covers some tuples of class
 - but can also cover some tuples of contrasting class
- d-weight
 - range: [0, 1] $d-weight = \frac{count(q \ a \in C_j)}{\sum_{i=1}^{m} count(q \ a \in C_i)}$
- quantitative discriminant rule form

Example: Quantitative Discriminant Rule

Status	Birth_country	Age_range	Gpa	Count
Graduate	Canada	25-30	Good	90
Undergraduate	Canada	25-30	Good	210

Count distribution between graduate and undergraduate students for a generalized tuple

Quantitative discriminant rule

$$\forall X, \ graduate_studen(X) \Leftarrow$$

$$birth_country(X) = "Canadd' \land age_range(X) = "25-30" \land gpa(X) = "good" \ [d:30\%]$$

$$- \ where 90/(90+120) = 30\%$$

Class Description

Quantitative characteristic rule

```
\forall X, target\_class(X) \Rightarrow condition(X) [t:t\_weight]
- necessary
```

Quantitative discriminant rule

```
\forall X, target\_class(X) \Leftarrow condition(X) [d:d\_weight]
```

- sufficient
- Quantitative description rule

```
\forall X, target\_class(X) \Leftrightarrow
condition_{1}(X)[t:w_{1},d:w'_{1}] \lor ... \lor condition_{n}(X)[t:w_{n},d:w'_{n}]
```

necessary and sufficient

Example: Quantitative Description Rule

Location/item		TV			Computer			Both_items	
	Count	t-wt	d-wt	Count	t-wt	d-wt	Count	t-wt	d-wt
Europe	80	25%	40%	240	75%	30%	320	100%	32%
N_Am	120	17.65%	60%	560	82.35%	70%	680	100%	68%
Both_ regions	200	20%	100%	800	80%	100%	1000	100%	100%

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

$$\forall X, Europe(X) \Leftrightarrow$$

$$(item(X)="TV")[t:25\%,d:40\%] \lor (item(X)="computer")[t:75\%,d:30\%]$$

Lecture-26

Mining descriptive statistical measures in large databases

Mining Data Dispersion Characteristics

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions -correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

• Mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

– Weighted arithmetic mean $\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

Median: A holistic measure

- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two $median = L_1 + (\frac{n/2 - (\sum f)l}{f_{median}})c$ values otherwise
 - estimated by interpolation

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal

– Empirical formula:

 $mean-mode = 3 \times (mean-median)$

Measuring the Dispersion of Data

Quartiles, outliers and boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: $IQR = Q_3 Q_1$
- Five number summary: min, Q_1 , M, Q_3 , max
- Boxplot: ends of the box are the quartiles, median is marked,
 whiskers, and plot outlier individually
- Outlier: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation

- Variance s^2 : (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} [\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2}]$$

– Standard deviation s is the square root of variance s^2

Boxplot Analysis

• Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e.,
 the height of the box is IRQ
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend to Minimum and Maximum

A Boxplot

Lecture-26 - Mining descriptive statistical measures in large databases

Visualization of Data Dispersion: Boxplot Analysis

Lecture-26 - Mining descriptive statistical measures in large databases

Mining Descriptive Statistical Measures in Large Databases

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum x_{i}^{2} - \frac{1}{n} (\sum x_{i})^{2} \right]$$

- Standard deviation: the square root of the variance
 - Measures spread about the mean
 - It is zero if and only if all the values are equal
 - Both the deviation and the variance are algebraic

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Lecture-26 - Mining descriptive statistical measures in large databases

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately $100 f_i$ % of the data are below or equal to the value x_i

Lecture-26 - Mining descriptive statistical measures in large databases

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Lecture-26 - Mining descriptive statistical measures in large databases

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Lecture-26 - Mining descriptive statistical measures in large databases

Loess Curve

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence
- Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression

Lecture-26 - Mining descriptive statistical measures in large databases

Graphic Displays of Basic Statistical Descriptions

- Histogram
- Boxplot
- Quantile plot: each value x_i is paired with f_i indicating that approximately $100 f_i$ % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
- Loess (local regression) curve: add a smooth curve to a scatter plot to provide better perception of the pattern of dependence

AO Induction vs. Learning-fromexample Paradigm

- Difference in philosophies and basic assumptions
 - Positive and negative samples in learning-from-example: positive used for generalization, negative - for specialization
 - Positive samples only in data mining: hence generalization-based, to drill-down backtrack the generalization to a previous state
- Difference in methods of generalizations
 - Machine learning generalizes on a tuple by tuple basis
 - Data mining generalizes on an attribute by attribute basis

Comparison of Entire vs. Factored Version Space

The entire version space

The factored version space

Lecture-26 - Mining descriptive statistical measures in large databases

Incremental and Parallel Mining of Concept Description

- Incremental mining: revision based on newly added data ΔDB
 - Generalize ΔDB to the same level of abstraction in the generalized relation R to derive ΔR
 - Union R U Δ R, i.e., merge counts and other statistical information to produce a new relation R'
- Similar philosophy can be applied to data sampling, parallel and/or distributed mining, etc.