UNIT-3 Data Mining Primitives, Languages, and System Architectures

Lecture Topic

Lecture-18 Data mining primitives: What defines a data mining task?

Lecture-19 A data mining query language

Lecture-20 Design graphical user interfaces

based on a data mining query language

Lecture-21 Architecture of data mining systems

Lecture-18

Data mining primitives: What defines a data mining task?

Why Data Mining Primitives and Languages?

- Finding all the patterns autonomously in a database? unrealistic because the patterns could be too many but uninteresting
- Data mining should be an interactive process
 - User directs what to be mined
- Users must be provided with a set of primitives to be used to communicate with the data mining system
- Incorporating these primitives in a data mining query language
 - More flexible user interaction
 - Foundation for design of graphical user interface
 - Standardization of data mining industry and practice

What Defines a Data Mining Task?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization of discovered patterns

Task-Relevant Data (Minable View)

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria

Types of knowledge to be mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Outlier analysis
- Other data mining tasks

Background Knowledge: Concept Hierarchies

- Schema hierarchy
 - street < city < province_or_state < country</pre>
- Set-grouping hierarchy
 - $\{20-39\} = young, \{40-59\} = middle_aged$
- Operation-derived hierarchy
 - email address: login-name < department < university < country</p>
- Rule-based hierarchy
 - low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 P2) < \$50</p>

Measurements of Pattern Interestingness

Simplicity

association rule length, decision tree size

Certainty

confidence, P(A|B) = n(A and B)/ n (B), classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight

Utility

potential usefulness, support (association), noise threshold (description)

Novelty

not previously known, surprising (used to remove redundant rules, Canada vs. Vancouver rule implication support ratio

Visualization of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - rules, tables, cross tabs, pie/bar chart
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspective to data
- Different kinds of knowledge require different representation: association, classification, clustering

Lecture-19 A data mining query language

A Data Mining Query Language (DMQL)

- Motivation
 - A DMQL can provide the ability to support ad-hoc and interactive data mining
 - By providing a standardized language like SQL
 - to achieve a similar effect like that SQL has on relational database
 - Foundation for system development and evolution
 - Facilitate information exchange, technology transfer, commercialization and wide acceptance
- Design
 - DMQL is designed with the primitives

Syntax for DMQL

- Syntax for specification of
 - task-relevant data
 - the kind of knowledge to be mined
 - concept hierarchy specification
 - interestingness measure
 - pattern presentation and visualization
 - a DMQL query

Syntax for task-relevant data specification

- use database database_name, or use data warehouse data_warehouse_name
- from relation(s)/cube(s) [where condition]
- in relevance to att_or_dim_list
- order by order_list
- group by grouping_list
- having condition

Syntax for specifying the kind of knowledge to be mined

Characterization

```
Mine_Knowledge_Specification ::= mine characteristics [as pattern_name] analyze measure(s)
```

Discrimination

```
Mine_Knowledge_Specification ::=
mine comparison [as pattern_name]
for target_class where target_condition
{versus contrast_class_i where contrast_condition_i}
analyze measure(s)
```

Association

Mine_Knowledge_Specification ::= mine associations [as pattern_name]

Syntax for specifying the kind of knowledge to be mined

Classification

Mine_Knowledge_Specification ::= mine classification [as pattern_name] analyze classifying_attribute_or_dimension

Prediction

```
Mine_Knowledge_Specification ::=
mine prediction [as pattern_name]
analyze prediction_attribute_or_dimension
{set {attribute_or_dimension_i= value_i}}
```

Syntax for concept hierarchy specification

- To specify what concept hierarchies to use use hierarchy < hierarchy > for < attribute_or_dimension >
- use different syntax to define different type of hierarchies
 - schema hierarchies
 define hierarchy time_hierarchy on date as [date,month quarter,year]
 - set-grouping hierarchies

```
define hierarchy age_hierarchy for age on customer as
```

level1: {young, middle_aged, senior} < level0: all</pre>

level2: {20, ..., 39} < level1: young

level2: {40, ..., 59} < level1: middle_aged

level2: {60, ..., 89} < level1: senior

Syntax for concept hierarchy specification

operation-derived hierarchies

define hierarchy age_hierarchy for age on customer as

```
{age_category(1), ..., age_category(5)} := cluster(default, age, 5) < all(age)
```

Syntax for concept hierarchy specification

```
- rule-based hierarchies
  define hierarchy profit_margin_hierarchy on item as
  level_1: low_profit_margin < level_0: all
      if (price - cost) < $50
  level_1: medium-profit_margin < level_0: all
      if ((price - cost) > $50) and ((price - cost) <=
      $250))
  level_1: high_profit_margin < level_0: all
      if (price - cost) > $250
```

Syntax for interestingness measure specification

 Interestingness measures and thresholds can be specified by the user with the statement:

```
with <interest_measure_name> threshold = threshold_value
```

• Example:

```
with support threshold = 0.05 with confidence threshold = 0.7
```

Syntax for pattern presentation and visualization specification

 syntax which allows users to specify the display of discovered patterns in one or more forms

display as <result_form>

 To facilitate interactive viewing at different concept level, the following syntax is defined:

```
Multilevel_Manipulation ::= roll up on attribute_or_dimension | drill down on attribute_or_dimension | add attribute_or_dimension | drop attribute_or_dimension
```

The full specification of a DMQL query use database AllElectronics db use hierarchy location_hierarchy for B.address mine characteristics as customerPurchasing analyze count% in relevance to C.age, I.type, I.place_made from customer C, item I, purchases P, items_sold S, works_at W, branch where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust ID = C.cust ID and P.method paid = ``AmEx'' and P.empl ID = W.empl ID and W.branch ID = B.branch ID and B.address = ``Canada" and I.price >= 100 with noise threshold = 0.05

display as table

Other Data Mining Languages & Standardization Efforts

- Association rule language specifications
 - MSQL (Imielinski & Virmani'99)
 - MineRule (Meo Psaila and Ceri'96)
 - Query flocks based on Datalog syntax (Tsur et al'98)
- OLEDB for DM (Microsoft'2000)
 - Based on OLE, OLE DB, OLE DB for OLAP
 - Integrating DBMS, data warehouse and data mining
- CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 - Providing a platform and process structure for effective data mining
 - Emphasizing on deploying data mining technology to solve business problems

Lecture-20

Design graphical user interfaces based on a data mining query language

Designing Graphical User Interfaces based on a data mining query language

- What tasks should be considered in the design GUIs based on a data mining query language?
 - Data collection and data mining query composition
 - Presentation of discovered patterns
 - Hierarchy specification and manipulation
 - Manipulation of data mining primitives
 - Interactive multilevel mining
 - Other miscellaneous information

Lecture-21 Architecture of data mining systems

Data Mining System Architectures

- Coupling data mining system with DB/DW system
 - No coupling—flat file processing,
 - Loose coupling
 - Fetching data from DB/DW
 - Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system- sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions

Data Mining System Architectures

Tight coupling—A uniform information processing environment

 DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods