UNIT-3: Data Mining Primitives, Languages, and System Architectures

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture-18</td>
<td>Data mining primitives: What defines a data mining task?</td>
</tr>
<tr>
<td>Lecture-19</td>
<td>A data mining query language</td>
</tr>
<tr>
<td>Lecture-20</td>
<td>Design graphical user interfaces based on a data mining query language</td>
</tr>
<tr>
<td>Lecture-21</td>
<td>Architecture of data mining systems</td>
</tr>
</tbody>
</table>
Lecture-18

Data mining primitives: What defines a data mining task?
Why Data Mining Primitives and Languages?

• Finding all the patterns autonomously in a database? — unrealistic because the patterns could be too many but uninteresting
• Data mining should be an interactive process
 – User directs what to be mined
• Users must be provided with a set of primitives to be used to communicate with the data mining system
• Incorporating these primitives in a data mining query language
 – More flexible user interaction
 – Foundation for design of graphical user interface
 – Standardization of data mining industry and practice
What Defines a Data Mining Task?

• Task-relevant data
• Type of knowledge to be mined
• Background knowledge
• Pattern interestingness measurements
• Visualization of discovered patterns
Task-Relevant Data (Minable View)

• Database or data warehouse name
• Database tables or data warehouse cubes
• Condition for data selection
• Relevant attributes or dimensions
• Data grouping criteria
Types of knowledge to be mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Outlier analysis
- Other data mining tasks
Background Knowledge: Concept Hierarchies

• Schema hierarchy
 – street < city < province_or_state < country
• Set-grouping hierarchy
 – \{20-39\} = young, \{40-59\} = middle_aged
• Operation-derived hierarchy
 – email address: login-name < department < university < country
• Rule-based hierarchy
 – low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 - P2) < $50
Measurements of Pattern Interestingness

• Simplicity
 association rule length, decision tree size

• Certainty
 confidence, \(P(A|B) = \frac{n(A \text{ and } B)}{n(B)} \), classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight

• Utility
 potential usefulness, support (association), noise threshold (description)

• Novelty
 not previously known, surprising (used to remove redundant rules, Canada vs. Vancouver rule implication support ratio)
Visualization of Discovered Patterns

• Different backgrounds/usages may require different forms of representation
 – rules, tables, cross tabs, pie/bar chart

• Concept hierarchy is also important
 – Discovered knowledge might be more understandable when represented at high level of abstraction
 – Interactive drill up/down, pivoting, slicing and dicing provide different perspective to data

• Different kinds of knowledge require different representation: association, classification, clustering
Lecture-19

A data mining query language
A Data Mining Query Language (DMQL)

• Motivation
 – A DMQL can provide the ability to support ad-hoc and interactive data mining
 – By providing a standardized language like SQL
 • to achieve a similar effect like that SQL has on relational database
 • Foundation for system development and evolution
 • Facilitate information exchange, technology transfer, commercialization and wide acceptance

• Design
 – DMQL is designed with the primitives
Syntax for DMQL

• Syntax for specification of
 – task-relevant data
 – the kind of knowledge to be mined
 – concept hierarchy specification
 – interestingness measure
 – pattern presentation and visualization
 – a DMQL query
Syntax for task-relevant data specification

• use database database_name, or use data warehouse data_warehouse_name
• from relation(s)/cube(s) [where condition]
• in relevance to att_or_dim_list
• order by order_list
• group by grouping_list
• having condition
Syntax for specifying the kind of knowledge to be mined

• Characterization
 Mine_Knowledge_Specification ::= mine characteristics [as pattern_name]
 analyze measure(s)

• Discrimination
 Mine_Knowledge_Specification ::= mine comparison [as pattern_name]
 for target_class where target_condition
 {versus contrast_class_i where contrast_condition_i}
 analyze measure(s)

• Association
 Mine_Knowledge_Specification ::= mine associations [as pattern_name]
Syntax for specifying the kind of knowledge to be mined

- **Classification**

 \[
 \text{Mine_Knowledge_Specification} ::= \\
 \text{mine classification [as pattern_name]} \\
 \text{analyze classifying_attribute_or_dimension}
 \]

- **Prediction**

 \[
 \text{Mine_Knowledge_Specification} ::= \\
 \text{mine prediction [as pattern_name]} \\
 \text{analyze prediction_attribute_or_dimension} \\
 \{\text{set } \{\text{attribute_or_dimension_i}= \text{value_i}\}\}
 \]
Syntax for concept hierarchy specification

• To specify what concept hierarchies to use
 use hierarchy `<hierarchy>` for `<attribute_or_dimension>`

• use different syntax to define different type of hierarchies
 – schema hierarchies
 define hierarchy `time_hierarchy` on `date` as `[date, month, quarter, year]`
 – set-grouping hierarchies
 define hierarchy `age_hierarchy` for `age` on `customer` as
 level1: `{young, middle_aged, senior}` < level0: all
 level2: `{20, ..., 39}` < level1: young
 level2: `{40, ..., 59}` < level1: middle_aged
 level2: `{60, ..., 89}` < level1: senior
Syntax for concept hierarchy specification

– operation-derived hierarchies

define hierarchy age_hierarchy for age on customer as

\{age_category(1), ..., age_category(5)\} :=
cluster(default, age, 5) < all(age)
Syntax for concept hierarchy specification

– rule-based hierarchies

define hierarchy profit_margin_hierarchy on item as
 level_1: low_profit_margin < level_0: all
 if (price - cost)< $50
 level_1: medium-profit_margin < level_0: all
 if ((price - cost) > $50) and ((price - cost) <= $250))
 level_1: high_profit_margin < level_0: all
 if (price - cost) > $250
Syntax for interestingness measure specification

• Interestingness measures and thresholds can be specified by the user with the statement:
 with <interest_measure_name> threshold = threshold_value

• Example:
 with support threshold = 0.05
 with confidence threshold = 0.7
Syntax for pattern presentation and visualization specification

• syntax which allows users to specify the display of discovered patterns in one or more forms
display as <result_form>

• To facilitate interactive viewing at different concept level, the following syntax is defined:

Multilevel_Manipulation ::= roll up on attribute_or_dimension | drill down on attribute_or_dimension | add attribute_or_dimension | drop attribute_or_dimension
The full specification of a DMQL query
use database AllElectronics_db
use hierarchy location_hierarchy for B.address
mine characteristics as customerPurchasing
analyze count%
in relevance to C.age, I.type, I.place_made
from customer C, item I, purchases P, items_sold S, works_at W, branch
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID
 and P.cust_ID = C.cust_ID and P.method_paid = `AmEx"
 and P.empl_ID = W.empl_ID and W.branch_ID = B.branch_ID and B.address = `Canada" and I.price >= 100
with noise threshold = 0.05
display as table
Other Data Mining Languages & Standardization Efforts

• Association rule language specifications
 – MSQL (Imielinski & Virmani’99)
 – MineRule (Meo Psaila and Ceri’96)
 – Query flocks based on Datalog syntax (Tsur et al’98)

• OLEDB for DM (Microsoft’2000)
 – Based on OLE, OLE DB, OLE DB for OLAP
 – Integrating DBMS, data warehouse and data mining

• CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 – Providing a platform and process structure for effective data mining
 – Emphasizing on deploying data mining technology to solve business problems
Lecture-20

Design graphical user interfaces based on a data mining query language
Designing Graphical User Interfaces based on a data mining query language

• What tasks should be considered in the design GUIs based on a data mining query language?
 – Data collection and data mining query composition
 – Presentation of discovered patterns
 – Hierarchy specification and manipulation
 – Manipulation of data mining primitives
 – Interactive multilevel mining
 – Other miscellaneous information
Lecture-21

Architecture of data mining systems
Data Mining System Architectures

• Coupling data mining system with DB/DW system
 – No coupling—flat file processing,
 – Loose coupling
 • Fetching data from DB/DW
 – Semi-tight coupling—enhanced DM performance

• Provide efficient implement a few data mining primitives in a DB/DW system: sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions

Lecture-21 - Architecture of data mining systems
Data Mining System Architectures

• Tight coupling—A uniform information processing environment

 – DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods