
UNIT-1.
Basic Structure of ComputerBasic Structure of Computer

Hardware and Software

EduTechLearnersEduTechLearners
(http://www.edutechlearners.com)

COMPUTER ORGANISATION
AND ARCHITECTUREAND ARCHITECTURE

 The components from which computers are built The components from which computers are built,
i.e., computer organization.

 In contrast computer architecture is the science In contrast, computer architecture is the science
of integrating those components to achieve a
level of functionality and performance.y p

 It is as if computer organization examines the
lumber, bricks, nails, and other building materialg

 While computer architecture looks at the design
of the house.

2http://www.edutechlearners.com

UNIT-1 CONTENTSUNIT 1 CONTENTS
• Evolution of Computer Systems (Historical

Prospective)p)
• Computer Types
• Functional units
• Bus structures
• Register Transfer and Micro-operations

Information Representation• Information Representation
• Instruction Format and Types
• Addressing modesAddressing modes
• Machine and Assembly Language Programming
• Macros and Subroutines

3http://www.edutechlearners.com

HISTORICAL PROSPECTIVEHISTORICAL PROSPECTIVE

Brief History of Computer EvolutionBrief History of Computer Evolution
Two phases:

b f VLSI 194 19 81. before VLSI 1945 – 1978
 ENIAC
 IAS IAS
 IBM
 PDP-8

2. VLSI 1978  present day
 microprocessors AND microcontrollers…

4http://www.edutechlearners.com

Evolution of Computersp
FIRST GENERATION (1945 – 1955)
 Program and data reside in the same memory Program and data reside in the same memory

(stored program concepts – John von Neumann)
 ALP was made used to write programs ALP was made used to write programs
 Vacuum tubes were used to implement the

functions (ALU & CU design)functions (ALU & CU design)
 Magnetic core and magnetic tape storage

devices are useddevices are used
 Using electronic vacuum tubes, as the switching

componentsp
5http://www.edutechlearners.com

SECOND GENERATION (1955SECOND GENERATION (1955 –
1965)

 Transistor were used to design ALU & CU
 HLL is used (FORTRAN) HLL is used (FORTRAN)
 To convert HLL to MLL compiler were used
 Separate I/O processor were developed to Separate I/O processor were developed to

operate in parallel with CPU, thus improving the
performance

 Invention of the transistor which was faster,
smaller and required considerably less power to
operateoperate

6http://www.edutechlearners.com

THIRD GENERATION (1965 1975)THIRD GENERATION (1965-1975)
 IC technology improved IC technology improved
 Improved IC technology helped in designing low

cost, high speed processor and memory
d lmodules

 Multiprogramming, pipelining concepts were
incorporatedp

 DOS allowed efficient and coordinate operation
of computer system with multiple users
C h d i t l t Cache and virtual memory concepts were
developed

 More than one circuit on a single silicon chipg p
became available

7http://www.edutechlearners.com

FOURTH GENERATION (1975-
1985)1985)
 CPU – Termed as microprocessor CPU Termed as microprocessor
 INTEL, MOTOROLA, TEXAS,NATIONAL

semiconductors started developing
imicroprocessor

 Workstations, microprocessor (PC) & Notebook
computers were developedp p

 Interconnection of different computer for better
communication LAN,MAN,WAN
C t ti l d i d b 1000 ti Computational speed increased by 1000 times

 Specialized processors like Digital Signal
Processor were also developedp

8http://www.edutechlearners.com

BEYOND THE FOURTH GENERATION
(1985 – TILL DATE)

 E Commerce E banking home office E-Commerce, E- banking, home office
 ARM, AMD, INTEL, MOTOROLA

Hi h d GH d High speed processor - GHz speed
 Because of submicron IC technology lot of

added features in small sizeadded features in small size

9http://www.edutechlearners.com

COMPUTER TYPES

Computers are classified based on theComputers are classified based on the
parameters like
S d f ti Speed of operation

 Cost
 Computational power
 Type of application

10http://www.edutechlearners.com

DESK TOP COMPUTER

 Processing & storage units, visual display &audio units,
keyboardskeyboards

 Storage media-Hard disks, CD-ROMs
 Eg: Personal computers which is used in homes and g p

offices
 Advantage: Cost effective, easy to operate, suitable for

general purpose educational or business applicationgeneral purpose educational or business application

NOTEBOOK COMPUTER

 Compact form of personal computer (laptop)
 Advantage is portability

11http://www.edutechlearners.com

WORK STATIONSWORK STATIONS
• More computational power than PC
•Costlier
•Used to solve complex problems which arises in
engineering application (graphics, CAD/CAM etc)

ENTERPRISE SYSTEM (MAINFRAME)
M t ti l•More computational power

•Larger storage capacity
•Used for business data processing in large organizationp g g g
•Commonly referred as servers or super computers

12http://www.edutechlearners.com

SERVER SYSTEMSERVER SYSTEM

• Supports large volumes of data which frequently need toSupports large volumes of data which frequently need to
be accessed or to be modified
•Supports request response operation

SUPER COMPUTERS

•Faster than mainframes
H l i l l i l l i l d l i h•Helps in calculating large scale numerical and algorithm

calculation in short span of time
•Used for aircraft design and testing, military application g g, y pp
and weather forecasting

13http://www.edutechlearners.com

HANDHELDHANDHELD
 Also called a PDA (Personal

Digital Assistant)Digital Assistant).
 A computer that fits into a

pocket, runs on batteries,
and is used while holding
the unit in your hand.

 Typically used as an Typically used as an
appointment book, address
book, calculator, and

t dnotepad.
 Can be synchronized with a

personal microcomputer aspersonal microcomputer as
a backup.

14http://www.edutechlearners.com

B i T i lBasic Terminology
 Computer  Software

 A device that accepts input,
processes data, stores data,
and produces output, all
according to a series of stored

 A computer program that tells
the computer how to perform
particular tasks.

g
instructions.

 Hardware

 Network
 Two or more computers and

other devices that are
 Includes the electronic and

mechanical devices that
process the data; refers to the
computer as well as peripheral

connected, for the purpose of
sharing data and programs.

P i h l d ip p p
devices.  Peripheral devices

 Used to expand the
computer’s input, output and
storage capabilities.g p

15http://www.edutechlearners.com

B i T i lBasic Terminology
 Input

 Whatever is put into a computer system Whatever is put into a computer system.
 Data

 Refers to the symbols that represent facts, objects, or ideas.
 Information

 The results of the computer storing data as bits and bytes; the words,
numbers, sounds, and graphics.

 Output
 Consists of the processing results produced by a computer Consists of the processing results produced by a computer.

 Processing
 Manipulation of the data in many ways.

 Memoryy
 Area of the computer that temporarily holds data waiting to be

processed, stored, or output.
 Storage

 Area of the computer that holds data on a permanent basis when it is not Area of the computer that holds data on a permanent basis when it is not
immediately needed for processing.

16http://www.edutechlearners.com

Basic TerminologyBasic Terminology

•Assembly language program (ALP) – Programs are y g g p g () g
written using mnemonics

•Mnemonic – Instruction will be in the form of English like•Mnemonic – Instruction will be in the form of English like
form

A bl i ft hi h t ALP t MLL•Assembler – is a software which converts ALP to MLL
(Machine Level Language)

•HLL (High Level Language) – Programs are written using
English like statements

•Compiler - Convert HLL to MLL, does this job by reading
source program at once

17

B i T i lBasic Terminology

•Interpreter – Converts HLL to MLL, does this job te p ete Co e ts to , does t s job
statement by statement

•System software Program routines which aid the•System software – Program routines which aid the
user in the execution of programs eg: Assemblers,
Compilers

•Operating system – Collection of routines
responsible for controlling and coordinating all the p g g
activities in a computer system

18http://www.edutechlearners.com

Functional Units

F ti
IMPORTANT

SLIDE !Function

ALL computer functions are:

SLIDE !

 ALL computer functions are:
 Data PROCESSING

Data STORAGE Data = Information Data STORAGE
 Data MOVEMENT
 CONTROL

Data = Information

Coordinates How CONTROL

NOTHING ELSE!

Coordinates How
Information is Used

 NOTHING ELSE!

20http://www.edutechlearners.com

F ti l U itFunctional Units

Input and
Arithmetic

logic

Output

Memory

Control

I/O Processor

Output Control

I/O Processor

System Interconnections

Figure 1.1. Basic functional units of a computer.
21http://www.edutechlearners.com

INPUT UNITINPUT UNIT

Computer accepts the coded information through input• Computer accepts the coded information through input
unit.

• It has the capability of reading the instruction & data to p y g
be processed.

• Converts the external world data to a binary format,
which can be understood by CPUwhich can be understood by CPU.

• Eg: Keyboard Mouse Joystick etc• Eg: Keyboard, Mouse, Joystick etc

22http://www.edutechlearners.com

F ti l U it(I/O)Functional Unit(I/O)
 A computer handles two types of information : A computer handles two types of information :
 Instruction :
 An instruction controls the transfer of information between a

computer and its I/O devices and also within the computer.
 A list of instructions that performs a task is called a

program, which is stored in the memory.
 To execute a program, computer fetches the instructions

one by one and specifies the arithmetic and logical
operations to be performed which are needed for the
desired program.

 A computer is completely controlled by the stored programs
except any external interrupts comes from any I/O device.

23http://www.edutechlearners.com

F ti l U it(I/O)Functional Unit(I/O)
 Data : Data :
 Data is a kind of information which is used as an operand

for a program.
S d t b b h t So, data can be any number or character.

 Even, a list of instructions, means an entire program can be
data if it is processed by another high-level program.

 In such case, that data is called source program.
 The most well-known input device is the keyboard,

beside this, there are many other kinds of input bes de s, e e a e a y o e ds o pu
devices are available, i.e., mouses, joysticks etc.

24http://www.edutechlearners.com

OUTPUT UNITOUTPUT UNIT

Converts the binary format data to a• Converts the binary format data to a
format that a common man can
understandunderstand

• Displays the processed results.
• Eg: Monitor, Printer, LCD, LED etc

25http://www.edutechlearners.com

MEMORY UNITMEMORY UNIT
 Composed of large array of bytes Composed of large array of bytes.
 Store programs and data .

 Parts of the memory subsystem Parts of the memory subsystem

 Fetch/store controller

Fetch: Retrieve a value from memory Fetch: Retrieve a value from memory

 Store: Store a value into memory

 Memory address register (MAR)

 Memory data register (MDR)

 Memory cells with decoder(s) to select individual
cells

26http://www.edutechlearners.com

T f M U itTypes of Memory Unit
 Primary storage
 Fast and Direct Access
 Programs must be stored in memory while they

are being executed.
 Large number of semiconductor storage cells.

RAM d ROM RAM and ROM
 Secondary storage
 used for bulk storage or mass storage used for bulk storage or mass storage.
 Indirect Access and slow.
 Magnetic Harddisks CDs Etc Magnetic Harddisks,CDs. Etc.

27http://www.edutechlearners.com

CACHE MEMORYCACHE MEMORY
 Memory access is much slower than processing Memory access is much slower than processing

time.

F t i t i t f ll Faster memory is too expensive to use for all
memory cells.

 Small size, fast memory just for values currently
in use speeds computing time.

 System Performance improved using this buffer
memory.

28http://www.edutechlearners.com

Arithmetic and Logic Unit
(ALU)(ALU)

Most computer operations are executed in Most computer operations are executed in
ALU of the processor.
L d th d i t b i th Load the operands into memory – bring them
to the processor – perform operation in ALU

store the result back to memory or retain in– store the result back to memory or retain in
the processor.

 Registers Registers
 Fast control of ALU

29http://www.edutechlearners.com

Arithmetic and Logic Unit
(ALU)(ALU)
 Actual computations are performed Actual computations are performed

 Primitive operation circuits

 Arithmetic (ADD)

 Comparison (CE) Comparison (CE)

 Logic (AND)

 Data inputs and results stored in registers

 Multiplexor selects desired outputp p
30http://www.edutechlearners.com

Arithmetic and Logic Unit
(ti d)(continued)

 ALU process

 Values for operations copied into ALU’s input Values for operations copied into ALU s input
register locations

 All circuits compute results for those inputs All circuits compute results for those inputs

 Multiplexor selects the one desired result from all
valuesvalues

 Result value copied to desired result register

31http://www.edutechlearners.com

Using a Multiplexor Circuit to Select the Proper ALU ResultUsing a Multiplexor Circuit to Select the Proper ALU Result
32http://www.edutechlearners.com

Th C t l U itThe Control Unit
 Manages stored program execution.

 The timing signals that govern the I/O transfers are also
generated by the control unit.g y

 Task

 Fetch from memory the next instruction to be
executed

 Decode it: Determine what is to be done

 Execute it: Issue appropriate command to ALU,
33

Execute it: Issue appropriate command to ALU,
memory, and I/O controllers

http://www.edutechlearners.com

Overall operation of a
tcomputer

The total operation of the computer is The total operation of the computer is
executed as
1 Computer accepts programs and data through1. Computer accepts programs and data through

input unit.
2 Information is also fetched in the processor from2. Information is also fetched in the processor from

memory.
3. Then information is processed and the

operation is executed.

34http://www.edutechlearners.com

Overall operation of a
tcomputer

4 Processed information is passed from output4. Processed information is passed from output
unit .

5. All these activities described above are5. All these activities described above are
sequentially done under the control signal from
the control unit.

35http://www.edutechlearners.com

COMPUTER ARCHITECTURE:Bus
Structures

There are many ways to connect different There are many ways to connect different
parts inside a computer together.
A f li i th t A group of lines or wires that serves as a
connecting path for several devices is called
a busa bus.

 Address/data/control

36http://www.edutechlearners.com

BUS STRUCTURE
Connecting CPU and memoryg y

The CPU and memory are normally connected by three
groups of connections, each called a bus: data bus, addressgroups of connections, each called a bus: data bus, address
bus and control bus

Connecting CPU and memory using three buses
37http://www.edutechlearners.com

INTERRUPTINTERRUPT
 An interrupt is a request from I/O device for An interrupt is a request from I/O device for

service by processor
 Processor provides requested service by Processor provides requested service by

executing interrupt service routine (ISR)
 Contents of PC, general registers, and someContents of PC, general registers, and some

control information are stored in memory .
 When ISR completed, processor restored, so p p

that interrupted program may continue

38http://www.edutechlearners.com

REGISTER TRANSFER AND

• Register Transfer Language

MICROOPERATIONS
• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Micro-operations

• Logic Micro-operations

Shift Mi ti• Shift Micro-operations

• Arithmetic Logic Shift Unit

39http://www.edutechlearners.com

SIMPLE DIGITAL SYSTEMS

 Combinational and sequential circuits can be
d t t i l di it l tused to create simple digital systems.

 These are the low-level building blocks of a
di it l tdigital computer.

 Simple digital systems are frequently
characterized in terms of
 the registers they contain, and

th ti th t th f the operations that they perform.

40http://www.edutechlearners.com

MICROOPERATIONS (1)

 The operations on the data in registers are called micro-
operations.operations.

 The functions built into registers are examples of micro-
operations
 Shift Shift
 Load
 Clear
 Increment

41http://www.edutechlearners.com

MICRO-OPERATION (2)
An elementary operation performed (during
one clock pulse), on the information stored
in one or more registersin one or more registers

ALURegisters ALU
(f)

Registers
(R) 1 clock cycle

R  f(R, R)

f: shift, load, clear, increment, add, subtract, complement,
and, or, xor, … 42http://www.edutechlearners.com

ORGANIZATION OF A DIGITAL
SYSTEM

• Definition of the (internal) organization of a computer

- Set of registers and their functions

- Microoperations set

Set of allowable microoperations provided
by the organization of the computer

- Control signals that initiate the sequence of
microoperations (to perform the functions)

43http://www.edutechlearners.com

REGISTER TRANSFER LEVEL

 Viewing a computer, or any digital system,
i thi i ll d th i t t fin this way is called the register transfer
level

 This is because we’re focusing on
Th t ’ i t The system’s registers

 The data transformations in them, and
 The data transfers between them.

44http://www.edutechlearners.com

REGISTER TRANSFER LANGUAGE

 Rather than specifying a digital system in words, a specific notation
is used register transfer languageis used, register transfer language

 For any function of the computer, the register transfer language
can be used to describe the (sequence of) microoperationscan be used to describe the (sequence of) microoperations

 Register transfer language
A b li l A symbolic language

 A convenient tool for describing the internal organization of digital computers
 Can also be used to facilitate the design process of digital systems.

45http://www.edutechlearners.com

DESIGNATION OF REGISTERS

 Registers are designated by capital letters, sometimes followed by
numbers (e g A R13 IR)numbers (e.g., A, R13, IR)

 Often the names indicate function:
 MAR - memory address register
 PC - program counter PC program counter
 IR- instruction register

 Registers and their contents can be viewed and represented in g p
various ways
 A register can be viewed as a single entity:

MAR

 Registers may also be represented showing the bits of data they contain

MAR

46http://www.edutechlearners.com

DESIGNATION OF REGISTERS

- a register
- portion of a register

• Designation of a register

portion of a register
- a bit of a register

• Common ways of drawing the block diagram of a register

R1
Register Showing individual bits

PC(H) PC(L)
15 8 7 0

7 6 5 4 3 2 1 0

R2
15 0

Numbering of bits Subfields
PC(H) PC(L)R2

47http://www.edutechlearners.com

REGISTER TRANSFER

 Copying the contents of one register to another is a register
transfer

 A register transfer is indicated as

R2  R1
 In this case the contents of register R1 are

copied (loaded) into register R2
A simultaneous transfer of all bits from the A simultaneous transfer of all bits from the
source R1 to the destination register
R2, during one clock pulse, g p

 Note that this is a non-destructive; i.e. the
contents of R1 are not altered by copying
(loading) them to R2

48

REGISTER TRANSFER

 A register transfer such as

R3  R5

Implies that the digital system has

 the data lines from the source register (R5) to the
destination register (R3)g ()

 Parallel load in the destination register (R3)
 Control lines to perform the action

49http://www.edutechlearners.com

CONTROL FUNCTIONS
 Often actions need to only occur if a certain condition is true
 This is similar to an “if” statement in a programming language

In digital s stems this is often done ia a control signal called a In digital systems, this is often done via a control signal, called a
control function

 If the signal is 1, the action takes place
 This is represented as:

P: R2  R1P: R2  R1

Which means “if P = 1 then load the contents ofWhich means if P = 1, then load the contents of
register R1 into register R2”, i.e., if (P = 1) then
(R2  R1)

50http://www.edutechlearners.com

HARDWARE IMPLEMENTATION
OF CONTROLLED TRANSFERS
Implementation of controlled transfer

P: R2 R1

Block diagram
ClockR2Control LoadP

Timing diagram

ClockR2

R1

Circuit
n

t t+1Timing diagram

T f h

Clock

Load

t t+1

Transfer occurs here

• The same clock controls the circuits that generate the control function
and the destination registerand the destination register

• Registers are assumed to use positive-edge-triggered flip-flops
51http://www.edutechlearners.com

SIMULTANEOUS OPERATIONS
 If two or more operations are to occur simultaneously,

they are separated with commas

P: R3  R5, MAR  IR

 Here, if the control function P = 1, load the contents of
R5 into R3, and at the same time (clock), load the

fcontents of register IR into register MAR

52http://www.edutechlearners.com

BASIC SYMBOLS FOR REGISTER

TRANSFERS

Capital letters Denotes a register MAR, R2
Symbols Description Examples

Capital letters Denotes a register MAR, R2
& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

A  D t t f f i f ti R2 R1Arrow  Denotes transfer of information R2  R1
Colon : Denotes termination of control function P:
Comma , Separates two micro-operations A  B, B  A

53http://www.edutechlearners.com

CONNECTING REGISTERS

 In a digital system with many registers, it is impractical to have
data and control lines to directly allow each register to be
loaded with the contents of every possible other registersloaded with the contents of every possible other registers

 To completely connect n registers  n(n-1) lines
O(n2) cost O(n2) cost
 This is not a realistic approach to use in a large digital system

 Instead take a different approach Instead, take a different approach
 Have one centralized set of circuits for data transfer – the bus
 Have control circuits to select which register is the source, and

hi h i th d ti tiwhich is the destination

54http://www.edutechlearners.com

BUS AND BUS TRANSFER
Bus is a path(of a group of wires) over which information is
transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  RFrom a register to bus: BUS  R

Register A Register B Register C Register D

Register A Register B Register C Register D

Bus lines

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
g g g g

B C D1 1 1 B C D2 2 2 B C D3 3 3 B C D4 4 4

0 0 0 04 x1
MUX

4 x1
MUX

4 x1
MUX

4 x1
MUX

x
y

select

0 0 0 0

4-line bus

y

55

TRANSFER FROM BUS TO A DESTINATION

REGISTER
Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

Load

2 x 4
Decoder

D0 D1 D2 D3z
w

Select E (enable)

Three-State Bus Buffers
Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Bus line with three-state buffers

Control input C

A0
Bus line for bit 0

0S0

B0
C0
D0

Select

Enable

1
2
3

S0
S1

56

BUS TRANSFER IN RTL

 Depending on whether the bus is to be mentioned explicitly or
not, register transfer can be indicated as either, g

or R2 R1

 In the former case the bus is implicit, but in the latter, it is
li itl i di t d

BUS R1, R2  BUS

explicitly indicated

57http://www.edutechlearners.com

MEMORY (RAM)
 Memory (RAM) can be thought as a sequential circuits

containing some number of registers
 These registers hold the words of memoryg y
 Each of the r registers is indicated by an address
 These addresses range from 0 to r-1
 Each register (word) can hold n bits of data Each register (word) can hold n bits of data
 Assume the RAM contains r = 2k words. It needs the following

 n data input lines
n data output lines data input lines n data output lines

 k address lines
 A Read control line
 A Write control line

data input lines

n

address lines
k

Read

Write

RAM
unit

data output lines

n

58http://www.edutechlearners.com

MEMORY TRANSFER
 Collectively, the memory is viewed at the register level as a

device, M.
 Since it contains multiple locations, we must specify which p , p y

address in memory we will be using
 This is done by indexing memory references

 Memory is usually accessed in computer systems by putting
the desired address in a special register, the Memory Address
Register (MAR or AR)Register (MAR, or AR)

 When memory is accessed, the contents of the MAR get sent
to the memory unit’s address lines

M

AR Memory
unit

Read

Write

M

Data inData out
59http://www.edutechlearners.com

MEMORY READ
 To read a value from a location in memory and load it into a

register, the register transfer language notation looks like this:

 This causes the following to occur
Th t t f th MAR t t t th dd li

R1  M[MAR]

 The contents of the MAR get sent to the memory address lines
 A Read (= 1) gets sent to the memory unit
 The contents of the specified address are put on the memory’s output data

lines
 These get sent over the bus to be loaded into register R1

60http://www.edutechlearners.com

MEMORY WRITE
 To write a value from a register to a location in memory looks

like this in register transfer language:

 This causes the following to occur
Th t t f th MAR t t t th dd li

M[MAR]  R1

 The contents of the MAR get sent to the memory address lines
 A Write (= 1) gets sent to the memory unit
 The values in register R1 get sent over the bus to the data input lines of

the memoryy
 The values get loaded into the specified address in the memory

61http://www.edutechlearners.com

SUMMARY OF R. TRANSFER MICROOPERATIONS

A  B Transfer content of reg. B into reg. A

AR DR(AD) Transfer content of AD portion of reg. DR into reg. AR() p g g
A  constantTransfer a binary constant into reg. A
ABUS  R1, Transfer content of R1 into bus A and, at the same time,
R2 ABUS t f t t f b A i t R2R2 ABUS transfer content of bus A into R2
AR Address register
DR Data register
M[R] Memory word specified by reg RM[R] Memory word specified by reg. R
M Equivalent to M[AR]
DR  M Memory read operation: transfers content of

memory word specified by AR into DRmemory word specified by AR into DR
M  DR Memory write operation: transfers content of

DR into memory word specified by AR

62http://www.edutechlearners.com

MICROOPERATIONS

• Computer system microoperations are of four types:p y p yp

- Register transfer microoperations
Arithmetic microoperations- Arithmetic microoperations

- Logic microoperations
- Shift microoperations

63http://www.edutechlearners.com

ARITHMETIC MICROOPERATIONS
 The basic arithmetic micro-operations are

 Addition
 Subtraction
 Increment
 Decrement

 The additional arithmetic micro-operations are
 Add with carry

S bt t ith b Subtract with borrow
 Transfer/Load
 etc. …

Summary of Typical Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3
R3  R1 - R2 Contents of R1 minus R2 transferred to R3
R2  R2’ Complement the contents of R2
R2  R2’+ 1 2's complement the contents of R2 (negate)
R3  R1 + R2’+ 1 subtraction
R1  R1 + 1 Increment
R1  R1 - 1 Decrement 64

BINARY ADDER / SUBTRACTOR / INCREMENTER

FA

B0 A0

C0FA

B1 A1

C1FA

B2 A2

C2FA

B3 A3

C3
Binary Adder

S0S1S2S3C4

Binary Adder-Subtractor
B0 A0B1 A1B2 A2B3 A3

C0C1C2C3

M

FA

S0

C0C1FA

S1

C2FA

S2

C3FA

S3C4

Binary Incrementer A0 1A1A2A3y

HA
x y

C S

HA
x y

C S

HA
x y

C S

HA
x y

C S

S0S1S2S3C4 65

ARITHMETIC CIRCUIT
S1
Cin

S1
S0
0
1
2
3

4x1MUX

X0

Y0

C0

C1
D0

FA
A0

B0

S0S1
Cin

S1
S0
0
1
23

4x1MUX

X1

Y1

C1

C2

D1
FA

S1
X2 C2

D2

A1

B1

A2
S1
S0
0
1
2
3

4x1MUX
Y2 C3

D2
FA

S1
S0
0 4 1

X3

Y3

C3

C4

D3
FA

B2

A3

B3 0
12
3

4x1MUX
Y3 C4

Cout

B3

0 1

S1 S0 Cin Y Output Microoperation
0 0 0 B D = A + B Add
0 0 1 B D = A + B + 1 Add with carry
0 1 0 B’ D = A + B’ Subtract with borrow
0 1 1 B’ D = A + B’+ 1 Subtract
1 0 0 0 D = A Transfer A1 0 0 0 D A Transfer A
1 0 1 0 D = A + 1 Increment A
1 1 0 1 D = A - 1 Decrement A
1 1 1 1 D = A Transfer A 66

LOGIC MICROOPERATIONS
 Specify binary operations on the strings of bits in registers

 Logic microoperations are bit-wise operations, i.e., they work on the individual
bits of data

 useful for bit manipulations on binary data
 useful for making logical decisions based on the bit value

 There are, in principle, 16 different logic functions that can be
d fi d t bi i t i bldefined over two binary input variables

0 0 0 0 0 … 1 1 1
0 1 0 0 0 1 1 1

A B F0 F1 F2 … F13 F14 F15

0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

 However, most systems only implement four of these
 AND (), OR (), XOR (), Complement/NOT

 The others can be created from combination of these The others can be created from combination of these

67http://www.edutechlearners.com

LIST OF LOGIC MICROOPERATIONS
List of Logic Microoperations• List of Logic Microoperations
- 16 different logic operations with 2 binary vars.
- n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

Boolean
F ti

Micro-
Operations Namex 0 0 1 1

y 0 1 0 1 Function Operationsy 0 1 0 1
0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR1 0 0 0 F8 = (x + y) F  A  B) NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's 68

HARDWARE IMPLEMENTATION OF LOGIC

MICRO-OPERATIONSC O O O S
B
A

Fi

i
i 0

1
4 X 1
MUX

S1

2

3

MUX

Select

S
S

1
0

0 0 F = A  B AND
S1 S0 Output -operation

Function table

0 1 F = AB OR
1 0 F = A  B XOR
1 1 F = A’ Complement

69http://www.edutechlearners.com

APPLICATIONS OF LOGIC
MICROOPERATIONSMICROOPERATIONS

 Logic micro-operations can be used to manipulate individual
bits or a portions of a word in a register

 Consider the data in a register A. In another register, B, is bit
data that will be used to modify the contents of A

 Selective-set A  A + B Selective set A  A + B
 Selective-complement A  A  B
 Selective-clear A  A • B’ Selective clear A  A B
 Mask (Delete) A  A • B
 Clear A  A  BClear A  A  B
 Insert A  (A • B) + C
 Compare A  A  Bp
 …. 70http://www.edutechlearners.com

SELECTIVE SET

I l ti t ti th bit tt i B i d t t In a selective set operation, the bit pattern in B is used to set
certain bits in A

1 1 0 0 A1 1 0 0 At

1 0 1 0 B
1 1 1 0 At+1 (A  A + B)

 If a bit in B is set to 1, that same position in A gets set to 1,
otherwise that bit in A keeps its previous value

71http://www.edutechlearners.com

SELECTIVE COMPLEMENT

I l ti l t ti th bit tt i B i d In a selective complement operation, the bit pattern in B is used
to complement certain bits in A

1 1 0 0 A1 1 0 0 At

1 0 1 0 B

0 1 1 0 A (A  A  B)0 1 1 0 At+1 (A  A  B)

 If a bit in B is set to 1, that same position in A gets complemented
from its original value otherwise it is unchangedfrom its original value, otherwise it is unchanged

72http://www.edutechlearners.com

SELECTIVE CLEAR

I l ti l ti th bit tt i B i d t l In a selective clear operation, the bit pattern in B is used to clear
certain bits in A

1 1 0 0 A1 1 0 0 At

1 0 1 0 B

0 1 0 0 A (A  A  B’)0 1 0 0 At+1 (A  A  B)

 If a bit in B is set to 1, that same position in A gets set to 0,
otherwise it is unchangedotherwise it is unchanged

73http://www.edutechlearners.com

MASK OPERATION

I k ti th bit tt i B i d t l t i In a mask operation, the bit pattern in B is used to clear certain
bits in A

1 1 0 0 A1 1 0 0 At

1 0 1 0 B

1 0 0 0 A (A  A  B)1 0 0 0 At+1 (A  A  B)

 If a bit in B is set to 0, that same position in A gets set to 0,
otherwise it is unchangedotherwise it is unchanged

74http://www.edutechlearners.com

CLEAR OPERATION

I l ti if th bit i th iti i A d B In a clear operation, if the bits in the same position in A and B are
the same, they are cleared in A, otherwise they are set in A

1 1 0 0 A1 1 0 0 At

1 0 1 0 B

0 1 1 0 A (A  A  B)0 1 1 0 At+1 (A  A  B)

75http://www.edutechlearners.com

INSERT OPERATION
 An insert operation is used to introduce a specific bit pattern

into A register, leaving the other bit positions unchanged
 This is done as

 A mask operation to clear the desired bit positions, followed by
 An OR operation to introduce the new bits into the desired positions
 Examplep

 Suppose you wanted to introduce 1010 into the low order four bits
of A: 1101 1000 1011 0001 A (Original)

1101 1000 1011 1010 A (Desired)

 1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask
1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits
1101 1000 1011 1010 A (Desired)

76

LOGICAL SHIFT
 In a logical shift the serial input to the shift is a 0.

 A right logical shift operation:g g p
0

 A left logical shift operation:
0

 In a Register Transfer Language, the following notation is usedg g g , g
 shl for a logical shift left
 shr for a logical shift right
 Examples:

 R2  shr R2
 R3  shl R3 77http://www.edutechlearners.com

CIRCULAR SHIFT
I i l hift th i l i t i th bit th t i hift d t f In a circular shift the serial input is the bit that is shifted out of
the other end of the register.

 A right circular shift operation: A right circular shift operation:

 A left circular shift operation:

 In a RTL, the following notation is used
 cil for a circular shift left

cirfor a circular shift right cirfor a circular shift right
 Examples:

 R2  cir R2
 R3  cil R3

78http://www.edutechlearners.com

Logical versus Arithmetic Shift

 A logical shift fills the newly created bit
position with zero:

0

• An arithmetic shift fills the newly created bit

CF

An arithmetic shift fills the newly created bit
position with a copy of the number’s sign bit:

CF

79http://www.edutechlearners.com

ARITHMETIC SHIFT

• In a RTL, the following notation is used
– ashl for an arithmetic shift left
– ashr for an arithmetic shift right
– Examples:

» R2  ashr R2
» R3  ashl R3» R3  ashl R3

80http://www.edutechlearners.com

HARDWARE IMPLEMENTATION
OF SHIFT MICROOPERATIONS

Select
0 for shift right (down)
1 for shift left (up)

Serial
input (IR)

S
0
1

H0MUX

A0
S

0
1

H1MUX

A0

A1

A2

S
0
1

H2MUX

A3

S
0
1

H3MUX

Serial
input (IL)

81http://www.edutechlearners.com

ARITHMETIC LOGIC SHIFT UNIT
S3

Arithmetic
Circuit

C
S3
S2
S1
S0

i

Di
Circuit

C 4 x 1
MUX

Select

0
1
2
3

F

E

i+1 i

Logic
CircuitB

A

A
A

E

shr
shl

i
i

i+1
i-1

i

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow0 0 1 0 0 F = A + B Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F 82

I f ti R t tiInformation Representation
 How is “information” represented in a computer How is information represented in a computer

system ?
 What are the different types of information What are the different types of information
 Text
 Numbers Numbers
 Images

 Video
 Photographic

 Audio

83http://www.edutechlearners.com

Everything is in Binary !
(1’s and 0’s)
 Computers are digital devices - they can only p g y y

manipulate information in digital (binary) form.
 Easy to represent 1 and 0 in electronic, magnetic and

optical devicesoptical devices
 Only need two states

 High/low
 On/off On/off
 Up/down
 etc

 All information in a computer system is All information in a computer system is
 Processed in binary form
 Stored in binary form
 Transmitted in binary form

84

 Transmitted in binary form

http://www.edutechlearners.com

How is information converted
t Bi fto Binary form
 I/O and Storage Devices are digital I/O and Storage Devices are digital
 I/O devices convert information to/from binary
 A keyboard converts the character “A” you type A keyboard converts the character A you type

into a binary code to represent “A”
 E.g. “A” is represented by the binary code

01000001
 Monitor converts 01000001 to the “A” that you

readread

85http://www.edutechlearners.com

Bits and Bytes
 One binary digit i.e. 1 or 0 is called a bit
 A group of 8 bits is one byteA group of 8 bits is one byte
 Byte is the unit of storage measurement

Number of Bytes Unit
1024 bytes (210 bytes) 1 Kilobyte (Kb)
1024 Kb (220 bytes) 1 Megabyte (Mb)
1024 Mb (230 bytes) 1 Gigabyte (Gb)(y) g y ()
1024 Gb (240 bytes) 1 Terabyte (Tb)
1024 Tb (250 bytes) 1 Petabyte (Pb)

http://www.edutechlearners.com 86

1024 Tb (2 bytes) 1 Petabyte (Pb)

Representing Te t ASCII CodeRepresenting Text- ASCII Code

 Textual information is made up of individual Textual information is made up of individual
characters e.g.

 Letters: Letters:
 Lowercase: a,b,c,..z
 Uppercase: A,B,C..Z

 Digits: 0,1,2,..9
 Punctuation characters: ., :, ; ,, “, ’, , ; ,, ,
 Other symbols: -, +, &, %, #, /,\,£, etc.).

http://www.edutechlearners.com 87

R ti T t ASCII C dRepresenting Text- ASCII Code
 Each character is represented by a unique binary code.

ASCII i i t ti l t d d th t ifi th ASCII is one international standard that specifies the
binary code for each character.

 American Standard Code for Information Interchangeg
 It is a 7-bit code - every character is represented by 7 bits
 There are other standards such as EBCDIC but these are

not widely used.
 ASCII is being superceded by Unicode of which ASCII is

a subset Unicode is a 16-bit codea subset. Unicode is a 16 bit code.

88http://www.edutechlearners.com

Sample ASCII Codesp
Char ASCII Decimal Char ASCII Decimal

NUL 000 0000 00 BEL 000 0111 07

LF 000 1010 10 CR 000 1011 13LF 000 1010 10 CR 000 1011 13

0 011 0000 48 SP 010 0000 20

1 011 0001 49 ! 010 0001 21

2 011 0010 50 “ 010 0010 22

9 011 1001 57

A 100 0001 65 a 110 0001 97

B 100 0010 66 b 110 0010 98

C 100 0011 67 c 110 0011 99

Y 101 1001 89 y 111 1001 121

Z 101 1010 90 z 111 1010 122

89http://www.edutechlearners.com

Comments on ASCII Codes
 Codes for A to Z and a to z form collating sequences

 A is 65, B is 66, C is 67 and so on
A is 97 b is 98 c is 99 and so on A is 97, b is 98, c is 99 and so on

 Lowercase code is 32 greater than Uppercase equivalent
 Note that digit ‘0’ is not the same as number 0Note that digit 0 is not the same as number 0

 ASCII is used for characters
 Not used to represent numbers (See later)

C d 0 t 30 t i ll f C t l Ch t Codes 0 to 30 are typically for Control Characters
 Bel - causes speaker to beep !
 Carriage Return (CR); LineFeed (LF)g () ()
 Others used to control communication between devices

 SYN, ACK, NAK, DLE etc

90http://www.edutechlearners.com

Review

 All information stored/transmitted in binary
 Devices convert to/from binary to other formsDevices convert to/from binary to other forms

that humans understand
 Bits and Bytes
 KB, Mb, GB, TB and PB are storage metrics
 ASCII code is a 7-bit code to represent text

h tcharacters
 Text “numbers” not the same as “math's”

numbersnumbers
 Do not add phone numbers or get average of PPS numbers

91http://www.edutechlearners.com

Representing Numbers: Integers

 Humans use Decimal Number System
 Computers use Binary Number System
 Important to understand Decimal system before looking at binary

system
 Decimal Numbers - Base 10

 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 Positional number system: the position of a digit in a number

determines its value
 Take the number 1649 Take the number 1649

 The 1 is worth 1000
 The 9 is worth 9 units

 Formally, the digits in a decimal number are weighted by increasing
powers of 10 i.e. they use the base 10. We can write 1649 in the
following form:
 1*103 + 6*102 + 4*101 + 9*100

http://www.edutechlearners.com 92

 1 10 + 6 10 + 4 10 + 9 10

Representing Numbers: Integers

 weighting: 103 102 101 100

 Digits 1 6 4 9
 1649 = 1*103 + 6*102 + 4*101 + 9*100

 Least Significant Digit: rightmost one - 9 above
 Lowest power of 10 weighting
 Digits on the right hand side are called the low-order digits (lower

powers of 10).

 Most Significant Digit: leftmost one - 1 above
 Highest power of 10 weighting
 The digits on the left hand side are called the high-order digits (higherThe digits on the left hand side are called the high order digits (higher

powers of 10)

http://www.edutechlearners.com 93

Representing Numbers: Decimal Numbers

 Largest n-digit number ?
 Made up of n consecutive 9’s (= 10n -1)
 Largest 4-digit number if 9999
 9999 is 104 -1

 Distinguishing Decimal from other number systems such as Binary, Distinguishing Decimal from other number systems such as Binary,
Hexadecimal (base 16) and Octal (base 8)

 How do we know whether the number 111 is decimal or binary

 One convention is to use subscripts
 Decimal: 11110 Binary:1112 Hex: 11116 Octal: 1118

 Difficult to write use keyboard

 Another convention is to append a letter (D, B, H, O)
 Decimal: 111D Binary:111B Hex: 111H Octal: 111O

http://www.edutechlearners.com 94

Representing Numbers: Binary Numbers

 Binary numbers are Base 2 numbers
 Only 2 digits: 0 and 1
 Formally the digits in a binary number are weighted by increasing powers Formally, the digits in a binary number are weighted by increasing powers

of 2

 They operate as decimal numbers do in all other respects

 Consider the binary number 0101 1100

W i h 27 26 25 24 23 22 21 20 Weight 27 26 25 24 23 22 21 20

 bits 0 1 0 1 1 1 0 0

 01011100 = 0*27 + 1*26 + 0*25 + 1*24 + 1*23 + 1*22 + 0*21 + 0*20

= 0 + 6410 + 0 + 1610 + 810 + 410 + 0 + 0
= 9210

http://www.edutechlearners.com 95

Representing Numbers: Binary Numbers

 Leftmost bit is the most significant bit (MSB). g ()
 The leftmost bits in a binary number are referred to as the

high-order bits.

 Rightmost bit is the least significant bit (LSB).
 The rightmost bits in a binary number are referred to as the g y

low-order bits.
 Largest n-bit binary number ?

 Made up of n consecutive 1’s (= 2n -1) Made up of n consecutive 1 s (2 1)
 e.g. largest 4-bit number: 1111 = 24 -1 = 15

http://www.edutechlearners.com 96

Representing Numbers: Binary Numbers

 Exercises

 Convert the following binary numbers to decimal:
 (i) 1000 1000 (ii) 1000 1001 (iii) 1000 0111() () ()
 (iv) 0100 0001 (v) 0111 1111 (vi) 0110 0001

 Joe Carty Formatting Convention
 In these notes we insert a space after every 4 bits to make the numbers

easier to read

http://www.edutechlearners.com 97

Representing Numbers: Converting Decimal to
Binary
 To convert from one number base to another:

 you repeatedly divide the number to be converted by the new base
 the remainder of the division at each stage becomes a digit in the new baseg g
 until the result of the division is 0.

 Example: To convert decimal 35 to binary we do the following:p y g

 Remainder
 35 / 2 1

17 / 2 1 17 / 2 1
 8 / 2 0
 4 / 2 0
 2 / 2 0
 1 / 2 1
 0

 The result is read upwards giving 3510 = 1000112.

98http://www.edutechlearners.com

Representing Numbers: Converting Decimal to
Binary

 Exercise: Convert the following decimal numbers to binary

 (1) 64(2) 65 (3) 32 (4) 16 (5) 48

 Shortcuts
 To convert any decimal number which is a power of 2, to binary,y p , y,

simply write 1 followed by the number of zeros given by the power of 2.
 For example,

32 is 25, so we write it as 1 followed by 5 zeros, i.e. 10000;
128 is 27 so we write it as 1 followed by 7 zeros i e 100 0000128 is 2 so we write it as 1 followed by 7 zeros, i.e. 100 0000.

 Remember that the largest binary number that can be stored in a given number of bits
is

made up of n 1’smade up of n 1 s.
 An easy way to convert this to decimal, is to note that this is 2n - 1.
 For example, if we are using 4-bit numbers, the largest value we can represent

is 1111 which is 24-1, i.e. 15

99http://www.edutechlearners.com

Representing Numbers: Converting Decimal to
Binary
 Binary Numbers that you should remember because they

occur so frequently

Binary Decimal

111 7111 7

1111 15

0111 1111 127

1111 1111 2551111 1111 255

100http://www.edutechlearners.com

INSTRUCTION FORMATINSTRUCTION FORMAT
&&

INSRUCTION TYPESINSRUCTION TYPES

1

Instruction FormatsInstruction Formats
• Bits of the instruction are divided in to fields..
• Most common fields are:
OPERATION CODE FIELD that specifies the O ON CO t at spec es t e

operation to be performed.
ADDRESS FIELD that designates a memory g y

address or a processor register.
MODE FIELD that specifies the way the

operand or effective address is determined. Or we
can say it tells about addressing mode to be
d dadopted.

2http://www.edutechlearners.com

REGISTER ADDRESSREGISTER ADDRESS
• Operands are generally stored in Memory or Processor

registers.
• Operands residing in memory are specified by their

memory addressmemory address.
• Operands residing in processor registers are specified by

their register address.
• A register address is a binary number of k bits which

defines one of the 2^k registers in the CPU.
F CPU h i 16 i R0 R15 ill• For eg. CPU having 16 processor registers R0 to R15 will
have a address field of 4 bits.

• As binary no. 0101 will designate R5.As binary no. 0101 will designate R5.

3http://www.edutechlearners.com

Instruction Formats

• Most systems today are GPR systems.
• There are three types:

– Memory-memory where two or three operands may be in
memorymemory.

– Register-memory where at least one operand must be in a
register.

– Load-store where no operands may be in memory.

• The number of operands and the number of
available registers has a direct affect on instruction
length.

4http://www.edutechlearners.com

Instruction Formats

• The next consideration for architecture design
h th CPU ill t d tconcerns how the CPU will store data .

• As the no. of address fields in the instruction format
depends on internal organization or architecture of itsdepends on internal organization or architecture of its
registers.

• We have three choices of CPU organizations
1. A stack architecture
2. An accumulator architecture
3. A general purpose register architecture.

• In choosing one over the other, the tradeoffs are

5

simplicity (and cost) of hardware design with execution
speed and ease of use.

http://www.edutechlearners.com

Instruction Formats

• In a stack architecture, instructions and operands
are implicitly taken from the stack.
– A stack cannot be accessed randomly.

• In an accumulator architecture one operand of aIn an accumulator architecture, one operand of a
binary operation is implicitly in the accumulator.
– Both operand is in memory, creating lots of bus traffic.

• In a general purpose register (GPR)
architecture, registers can be used instead of
memorymemory.
– Faster than accumulator architecture.
– Efficient implementation for compilers.

6

– Results in longer instructions.
http://www.edutechlearners.com

STACK ARCHITECTURE

• Stack machines use one - and zero-operand
instructions.

• LOAD and STORE instructions require a single
memory address operandmemory address operand.

• Other instructions use operands from the stack
implicitly.

• PUSH and POP operations involve only the stack’s
top element.

• Binary instructions (e g ADD MULT) use the top• Binary instructions (e.g., ADD, MULT) use the top
two items on the stack.

7http://www.edutechlearners.com

STACK ARCHITECTURE

• Stack architectures require us to think about
arithmetic expressions a little differently.

• We are accustomed to writing expressions using
i fi t ti h Z X Yinfix notation, such as: Z = X + Y.

• Stack arithmetic requires that we use postfix
t ti Z XYnotation: Z = XY+.

• Eg. PUSH X

PUSH Y

ADD

8http://www.edutechlearners.com

ACCUMULATOR ARCHITECTUREACCUMULATOR ARCHITECTURE

• All operations will be performed using an
accumulator register.g

• It only requires one address field.
• Eg ADD X• Eg. ADD X
where X is the address of operand and adding

ill b h ld lik AC M[X] ACwill be held like AC+M[X] goes to AC
where AC is accumulator register.

9http://www.edutechlearners.com

GENERAL REGISTER
ARCHITECTUREARCHITECTURE

• General processor registers and memoryGeneral processor registers and memory
word will be used here for storage of
operandsoperands.

• It needs two to three address fields
E ADD R1 R2 R3• Eg: ADD R1, R2, R3

ADD R1, R2
MOV R1, R2
ADD R1 XADD R1, X

10http://www.edutechlearners.com

TYPES OF ADDRESS
INSTRUCTIONSINSTRUCTIONS

• THREE ADDRESS INSTRUCTIONS
• TWO ADDRESS INSTRUCTIONSTWO ADDRESS INSTRUCTIONS
• ONE ADDRESS INSTRUCTIONS

ZERO ADDRESS INSTRUCTIONS• ZERO ADDRESS INSTRUCTIONS
• RISC INSTRUCTIONS

11http://www.edutechlearners.com

Example to explain different address
instructionsinstructions

• For example, the infix expression, p , p ,
Z = (X  Y) + (W  U)

Where X,Y,W and U are the
memory addresses wherememory addresses where
the operands are stored.

12http://www.edutechlearners.com

THREE ADDRESS INSTRUCTION
• With a three-address ISA, (e.g.,mainframes),

the infix expression,
Z = X  Y + W  U

i ht l k lik thimight look like this:
MUL R1,X,Y
MUL R2,W,U
ADD Z,R1,R2

13http://www.edutechlearners.com

TWO ADDRESS INSTRUCTION

• In a two-address ISA, (e.g.,Intel, Motorola), the
infix expression,

Z = X  Y + W  U
i ht l k lik thimight look like this:

MOV R1,X
MUL R1,Y
MOV R2,W
MUL R2,U
ADD R1,R2
MOV Z,R1

14http://www.edutechlearners.com

ONE ADDRESS INSTRUCTION

• In a one-address ISA, the infix expression,
Z = X  Y + W  U

looks like this:
LOAD XLOAD X
MUL Y
STORE TEMP
LOAD WLOAD W
MUL U
ADD TEMP
STORE ZSTORE Z

Accumulator will be used here.

15http://www.edutechlearners.com

ZERO ADDRESS INSTRUCTION

• In a stack ISA, the postfix expression,
Z = X Y  W U  +

might look like this:
PUSH X
PUSH Y
MULU
PUSH W
PUSH U
MUL

Note: The result of
a binary operation MUL

ADD
PUSH Z

is implicitly stored
on the top of the
stack!

16http://www.edutechlearners.com

RISC INSTRUCTION
• With a RISC (Reduced Instruction set computer)

the infix expression,
Z = X  Y + W  U

i ht l k lik thimight look like this:
LOAD R1,X
LOAD R2,Y,
LOAD R3,W
LOAD R4,U
MUL R1 R1 R2 Contains less no ofMUL R1,R1,R2
MUL R3,R3,R4
ADD R1,R1,R3
STORE Z R1

Contains less no. of
instructions.

17

STORE Z,R1
http://www.edutechlearners.com

Instruction Formats

• We have seen how instruction length is affected
by the number of operands supported by the ISA.

• In any instruction set, not all instructions require
th b f dthe same number of operands.

• Operations that require no operands, such as
HALT necessarily waste some space when fixed-HALT, necessarily waste some space when fixed-
length instructions are used.

• This is all about INSTRUCTION FORMAT.

18http://www.edutechlearners.com

Instruction typesyp

Instructions fall into several broad categories
that you should be familiar with:

• Data Transfer Instructions
D t M i l ti I t ti• Data Manipulation Instructions

 Arithmetic
 Logicalg
 Shift

• Program Control Instructions

19http://www.edutechlearners.com

Data Transfer InstructionsData Transfer Instructions

Name Mnemonic
Load LD

Store STStore ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

20http://www.edutechlearners.com

Data Manipulation InstructionsData Manipulation Instructions
Arithmetic Instructions:Arithmetic Instructions:

Name Mnemonics
Increment INCIncrement INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with borrow SUBB
Negate(2’s compliment) NEG

21

Negate(2 s compliment) NEG

http://www.edutechlearners.com

Data Manipulation InstructionsData Manipulation Instructions
Logical and Bit manipulation Instructions:Logical and Bit manipulation Instructions:

Name Mnemonics
Clear CLRClear CLR
Compliment COM
AND AND
OR OR
EXOR XOR
Clear carry CLRCy
Set carry SETC
Compliment carry COMPC
Enable and Disable Interrupt EI & DI

22

Enable and Disable Interrupt EI & DI

http://www.edutechlearners.com

Data Manipulation InstructionsData Manipulation Instructions
Shift Instructions:Shift Instructions:

Name Mnemonics
Logical shift Right SHRLogical shift Right SHR
Logical shift Left SHL

Arithmetic Shift Right SHRA
Arithmetic Shift Left SHLA
Rotate Right ROR
Rotate Left ROL
Rotate Right with carry RORC
Rotate Left with carry ROLC

23http://www.edutechlearners.com

Program Control InstructionsProgram Control Instructions

Name Mnemonics
Branch BR
Jump JMPJump JMP

Skip SKP
Call CALL
Return RET
Compare(by subtraction) CMP
Test(by ANDing) TST(y g)

24http://www.edutechlearners.com

Program Control Instructions (Conditional
B h I t ti)Branch Instructions)

Name Mnemonics Tested Conditions
Branch if zero BZ Z=1
Branch if not zero BNZ Z=0Branch if not zero BNZ Z 0
Branch if carry BC C=1
Branch if not carry BNC C=0
Branch if overflow OR
not overflow

BV or BNV V=1 OR 0

Branch if greater than BGT A>B
Branch if less than BLT A<B
Branch if equal BE A=B
Branch if not equal BNE A not equal to Bq q
Branch if higher BHI A>B
Branch if lower BLO A<B 25

Addressing Modesg
• An architecture addressing mode is the set of

syntaxes and methods that instructions use to specify y p y
a memory address
– For operands or results
– As a target address for a branch instructionAs a target address for a branch instruction

• When a microprocessor accesses memory, to either
read or write data, it must specify the memory
address it needs to access

• Several addressing modes to generate this address
are known, a microprocessor instruction set
architecture may contain some or all of those modes, y ,
depending on its design

• In the following examples we will use the LDAC
instruction (loads data from a memory location into
the AC - accumulator - microprocessor register)

26http://www.edutechlearners.com

Types of Addressing Modesyp g
• Direct Mode

Indirect Mode• Indirect Mode
• Register Direct Mode

R i t I di t M d• Register Indirect Mode
• Immediate Mode
• Implicit Addressing Mode
• Displacement Addressing Mode
• Relative Addressing Mode
• Indexed Addressing Mode
• Base Addressing Mode
• Auto Increment and Auto Decrement Mode

27

Direct mode

Address AOp-code

Instruction

Memory

Operand

I t ti i l d th A dd• Instruction includes the A memory address
• LDAC 5 – accesses memory location 5, reads the data (10)

and stores the data in the microprocessor’s accumulatora d sto es t e data t e c op ocesso s accu u ato
• This mode is usually used to load variables and operands

into the CPU 28

Indirect mode

Address AOp-code

Instruction

Pointer to operand

• Starts like the direct mode, but it makes an
extra memory access. The address specified
in the instruction is not the address of thein the instruction is not the address of the
operand, it is the address of a memory
location that contains the address of the
operand.

• LDAC @5 or LDAC (5) first retrieves the Memory

operand

• LDAC @5 or LDAC (5), first retrieves the
content of memory location 5, say 10, and
then CPU goes to location 10, reads the
content (20) of that location and loads the
data into the CPUdata into the CPU

29http://www.edutechlearners.com

Register direct modeRegister direct mode
Register Address ROpcode

Instruction Registers

OperandOperand

• It specifies a register instead a memory address
• LDAC R – if register R contains an value 5 then the value 5LDAC R if register R contains an value 5, then the value 5

is copied into the CPU’s accumulator
• No memory access
• Very fast execution
• Very limited address space

30

Register indirect mode

Register Address ROpcode

Instruction

Pointer to

Operand

operand

R i

• LDAC @R or LDAC (R) – the register contains the address
of the operand in the memory

MemoryRegisters

• Register R (selected by the operand), contains value 5
which represents the address of the operand in the memory
(10)

• One fewer memory access than indirect addressing 31

Immediate modeImmediate mode

• The operand is not specifying an address, it is the
actual data to be used
LDAC #5 l d t ll l 5 i t th CPU’• LDAC #5 loads actually value 5 into the CPU’s
accumulator
No memory reference to fetch data• No memory reference to fetch data

• Fast, no memory access to bring the operand

32http://www.edutechlearners.com

Implicit addressing modep g
• Doesn’t explicitly specify an operand

Th i t ti i li itl ifi th d b• The instruction implicitly specifies the operand because
always applies to a specific register

• This is not used for load instructions
• As an example, consider an instruction CLAC, that is

clearing the content of the accumulator in a processor and
it is always referring to the accumulatorit is always referring to the accumulator

• This mode is used also in CPUs that do use a stack to
store data; they don’t specify an operand because it is ; y p y p
implicit that the operand must come from the stack

33http://www.edutechlearners.com

Displacement addressing modep g
Register ROpcode

Instruction

Address A

Instruction

Pointer to + OperandOperand

Registers

+

• Effective Address = A + (content of R)
• Address field hold two values

A b l

Memory

– A = base value
– R = register that holds displacement
– or vice versa

34

Relative addressing mode
• It is a particular case of the displacement addressing, where the

register is the program counter; the supplied operand is an g p g ; pp p
offset; Effective Address = A + (PC)

• The offset is added to the content of the CPU’s program
counter register to generate the required addressg g q

• The program counter contains the address of next instruction to
be executed, so the same relative instruction will produce
different addresses at different locations in the program

• Consider that the relative instruction LDAC $5 is located at
memory address 10 and it takes two memory locations; the
next instruction is at location 12, so the operand is actually
l t d t (12 5) 17 th i t ti l d th d tlocated at (12 +5) 17; the instruction loads the operand at
address 17 and stores it in the CPU’s accumulator

• This mode is useful for short jumps and reloadable code

35http://www.edutechlearners.com

Indexed addressing modeg

• Works like relative addressing mode; instead g
adding the A to the content of program counter
(PC), the A is added to the content of an index
registerregister

• If the index register contains value 10, then the
instruction LDAC 5(X) reads data from memoryinstruction LDAC 5(X) reads data from memory
at location (5+10) 15 and stores it in the
accumulator

• Good for accessing arrays
– Effective Address = A + IndexReg
– R++

36http://www.edutechlearners.com

Based addressing modeg

• Works the same with indexed
addressing mode, except that the index g , p
register is replaced by a base address
registerg

• A holds displacement
• R holds pointer to base address• R holds pointer to base address
• R may be explicit or implicit
• e.g. segment registers in 80x86

37http://www.edutechlearners.com

Auto increment & Decrement
addressing modeaddressing mode

• Similar to the register indirect mode except that
the register is incremented or decremented afterthe register is incremented or decremented after
its value is used to access memory.
I t d D t I t ti d• Increment and Decrement Instructions are used
here.

38http://www.edutechlearners.com

MACHINE AND
ASSEMBLY LANGAUGE

PROGRAMMING

39http://www.edutechlearners.com

Computer OperationsComputer Operations

A comp ter is a programmable electronic• A computer is a programmable electronic
device that can store, retrieve, and process
datadata

• Data and instructions to manipulate the data
are logically the same and can be stored inare logically the same and can be stored in
the same place

• Store, retrieve, and process are actions that , , p
the computer can perform on data

40http://www.edutechlearners.com

Machine LanguageMachine Language

• Machine language The instructions built into
the hardware of a particular computer

• Initially, humans had no choice but to write
programs in machine language because

th i l h d t tother programming languages had not yet
been invented

41http://www.edutechlearners.com

Machine LanguageMachine Language

• Every processor type has its own set
of specific machine instructions

• The relationship between the processor and
the instructions it can carry out is completely
i t t dintegrated

• Each machine-language instruction does only
l l l t kone very low-level task

42http://www.edutechlearners.com

Assembly LanguageAssembly Language

• Assembly languages A language that uses
mnemonic codes to represent machine-
language instructions
– The programmer uses these alphanumeric

d i l f bi di itcodes in place of binary digits

– A program called an assembler reads each
of the instructions in mnemonic form and
translates it into the machine-language

i l tequivalent
43http://www.edutechlearners.com

Assembly Language FormatAssembly Language Format

44

Assembly ProcessAssembly Process

45http://www.edutechlearners.com

	chapter 1 -Basic Structure of Computer Hardware and Software
	Instruction format And types [Compatibility Mode]

